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Abstract. A basic issueof mobile robotics is generating environment maps automatically. Outdoor
terrain is challengingsincethe ground is uneven and the surrounding is structured irregularly. In earlier
work, we have intro duced 6D SLAM (Simultaneous Localization and Mapping) as a method to taking
all six DOF of robot poses(x, y, z translation; roll, pitch, yaw angles) into account. This paper adds
to 6D SLAM a method for extracting drivable surfacesin the 3D mapswhile they are being generated.
Experiments have beenmade in a Botanical Garden, with drivable surfacesconsisting of gravel paths
or lawn, both involving signi�can t slope.

In tro duction

Figure 1: The mobile robot Kurt3D.

Digital 3D models of the environment are needed in
rescue,exploration and inspection robotics, industrial
automation, facilit y management, agriculture and ar-
chitecture. Many robotic tasks require highly precise
environment maps as well. Building them manually
is tedious: Thrun et al. report a time of about one
week hard work for creating a 2D map of the museum
in Bonn for RHINO [26]. It is even harder when 3D
mapsare needed,and is getting nearly impossiblewhen
mapping generaloutdoor environments. Therefore, au-
tomatic mapping is crucial in robotics. Autonomous
mobile robots equipped with 3D laserscannersare well
suited for the gaging task [18]. Contrary to indoor ap-
plications, robot posesin natural outdoor environments
also involve pitch, roll and elevation, turning poseesti-
mation into a problem in six mathematical dimensions.
6D SLAM [18] considersall of thesesix dimensionsfor
the robot posewhile generating 3D maps. In our experiments we usethe mobile robot Kurt3D (Fig. 1, and Fig.
5, left). It is equipped with a 3D laser scanner,which is built on the basisof a SICK 2D range �nder by extension
with a mount and a small servo motor [17,23]).



Mapping autonomously outdoor terrain adds another complication that is not present in typical indoor SLAM:
Finding of drivable surfacesahead. Indoor SLAM can typically assumethat the robot may get along and extend
its map wherever no obstacle is visible. This strategy has always required somecare in the vicinit y of staircases,
but is good enoughin many buildings. In outdoor terrain, actively looking for navigable surfaceis mandatory, as
raggedground, potholes, or stepsare to be expected at any place.

This paper adds to our previous work on 6D SLAM the functionalit y of detecting geometrically navigable surfaces
in the 3D map that is being built. This information may then be used to determine the next poseor posesto
steer to. To make the paper self-su�cien t, we include a brief review of the complete 6D SLAM processin which
the surface interpretation processis embedded; for details of 6D SLAM, pleaserefer to previous publications,
i.e., [17,18].

Related Work

SLAM. SLAM algorithms di�er depending on the map type. State of the art for metric maps are probabilistic
methods, where the robot has probabilistic motion and uncertain perception models. By integrating these two
distributions with a Bayes �lter, e.g., Kalman or particle �lter, it is possible to localize the robot. Mapping is
often regarded as an extension to this estimation problem. Beside the robot pose, positions of landmarks are
estimated. Closed loops, i.e., a secondencounter of a previously visited area of the environment, play a special
role here. Once detected, they enable the algorithms to bound the error by deforming the already mapped area
such that a topologically consistent model is created. However, there is no guarantee for a correct model. Several
strategiesexist for solvingSLAM. Thrun reviewsin [27]existing techniques,i.e., maximum likelihood estimation [9],
expectation maximization [8,28], extendedKalman �lter [6] or (sparseextended) information �lter [30]. In addition
to thesemethods, FastSLAM [29] that approximates the posterior probabilities, i.e., robot poses,by particles, and
the method of Lu and Milios on the basisof IDC scanmatching [15] exist.

In principle, theseprobabilistic methodsareextendableto 6D. However, no reliable featureextraction nor a strategy
for reducing the computational costsof multi hypothesistracking, e.g., FastSLAM, that grows exponentially with
the degreesof freedom,has beenpublished to our knowledge.

3D Mapping. Instead of using 3D scanners,which yield consistent 3D scansin the �rst place,somegroupshave
attempted to build 3D volumetric representations of environments with 2D laser range �nders. Thrun et al. [29],
Fr•uh et al. [10] and Zhao et al. [33] use two 2D laser scanners�nders for acquiring 3D data. One laser scanner
is mounted horizontally , the other vertically. The latter one grabs a vertical scan line which is transformed into
3D points basedon the current robot pose. Sincethe vertical scanneris not able to scansidesof objects, Zhao et
al. use two additional, vertically mounted 2D scanners,shifted by 45� to reduce occlusions[33]. The horizontal
scanner is used to compute the robot pose. The precision of 3D data points depends on that poseand on the
precision of the scanner.

A few other groups use highly accurate, expensive 3D laser scanners[1,11,22]. The RESOLV project aimed at
modeling interiors for virtual reality and tele-presence[22]. They useda RIEGL laserrange�nder on robots and the
ICP algorithm for scanmatching [4]. The AVENUE project developsa robot for modeling urban environments [1],
using a CYRAX scannerand a feature-basedscanmatching approach for registering the 3D scans. Nevertheless,
in their recent work they do not usedata of the laserscannerin the robot control architecture for localization [11].
The group of M. Hebert hasreconstructedenvironments using the Zoller+F r•ohlich laserscannerand aims to build
3D models without initial position estimates, i.e., without odometry information [12].

Recently , di�eren t groups employ rotating SICK scannersfor acquiring 3D data [13,23,31,32]. Wulf et al. let the
scannerrotate around the vertical axis. They acquire 3D data while moving, thus the quality of the resulting map
crucially depends on the poseestimate that is given by inertial sensors,i.e., gyros [32]. In addition, their SLAM
algorithms do not considerall six degreesof freedom.

Other approachesuse information of CCD-camerasthat provide a view of the robot's environment [5,21]. Nev-
ertheless, cameras are di�cult to use in natural environments with changing light conditions. Camera-based
approachesto 3D robot vision, e.g., stereocamerasand structure from motion, have di�culties providing reliable
navigation and mapping information for a mobile robot in real-time. Thus somegroups try to solve 3D modeling
by using planar scannerbasedSLAM methods and cameras,e.g., in [5].



Autonomous Outdo or Driving. Much work has been done in the area of autonomous outdoor driving.
Batavia and Singh [3] navigate their robot in locally smooth hilly terrain and use a yawing SICK laser range
scanner in a �xed pitching angle towards the the ground. They use an object vs. freespaceclassi�cation for
driving. Similarly, Patel et al. [20] use also a yawable SICK scanner to classify drivable surfaces. Their work
focuseson controlling the yawable scanner to acquire the necessarydepth information while driving. They also
use local gradients to classify drivable surfaces.

A good overview of the state of the art in military context for autonomousnavigation in highly unstructured terrain
is given in [16]. Two classesof algorithms are discussed:First, obstacleavoidanceusing ladar (for short range) or
stereocamera(for long range). Second,terrain cover classi�cation using a stereocamerafor color analysisor ladar
for range texture analysis. The advantagesand disadvantages of each kind of sensorfor di�eren t applications is
discussed.

The Con text: Outdo or SPLAM

Our drivable surface extraction method is part of an overall robot control system for Simultaneous Planning,
Localization, and Mapping (SPLAM) in outdoor environments, which is currently under development. Before we
describe the method, we will sketch this context, into which it has to �t.

The generalidea is to do SLAM indoor or outdoor or in mixed indoor/outdo or environments, and integrate into it
a planning processfor selectingthe next poseto move to for making the map under development more complete.
This planning processshould generatethe next view poseand plan the path to go there under reactive execution;
alternativ ely, it should be able to respond to other requeststhat the robot receives,interrupting the SLAM process
for sometime. The main di�erence to state-of-the-art SLAM, as brie
y recapitulated in the previous section, lies
in two points: First, we are not restricted to 2D mapsof indoor environments, but do full 6D SLAM generating3D
maps;and second,we integrate into it a poseplanning processallowing the SLAM processto beoptimized explicitly
according to criteria like expected time or expected path length. In previous work [24], we have demonstrated an
instance of that scenario,which was restricted to a 
at and continuous 
o or (i.e., regular indoor environments),
and which has useda specializednext-best-view planner for the planning part.

Our outdoor SPLAM procedureconsistsof the following subtasks:

1. Extrap olate the odometry readingsto all six degreesof freedomusing previous registration matrices [18].

2. Find a heuristic poseupdate using octrees[18].

3. Use the ICP algorithm [4] to match the 3D scans. Hereby use point reduction and approximate kD-tree
search to acceleratethe scanmatching [17].

4. Extract the drivable surfacefrom the current 3D model.

5. Plan the next scanposeand a path to go there from the current posealong a drivable surface.

6. Execute this path in closed-loop control mode.

7. Find \closed loops" using octrees and, if a closedloop is detected, distribute any occurring error over the
3D scansforming the loop [25].

8. Usea global relaxation method o�-line to create highly precise3D maps [24].

Of this list, items 1{6 are executedin a looping fashion, while the closedloop detection (item 7) is only executed
if the current poseestimation is such that a closedloop is possible;the global relaxation (item 8) is only executed
o�-line on the map consisting of all scans.

As the citations in the item list suggests,we have presented solutions to many of thesesubtasksin previous work,
drivable surfaceextraction being the �rst one open on the list. Before we present our solution to this problem in
the next section, the following subsectionswill recapitulate our solutions to the preceding items 1{3, to set the
context for the surfaceextraction task. Readersfamiliar with this previous work may safely skip the rest of this
section. Our solutions to items 6 and 7 will not be recapitulated here as they are not required for understanding
the contribution of this paper. Pleaserefer to the cited literature.



Item 1: Odometry Extrap olation. We �rst extrapolate the odometry readingsto all six degreesof freedom
using previous registration matrices. The robot pose is the 6-vector P = (x; y; z; � x ; � y ; � z ) or, equivalently the
tuple containing the rotation matrix and translation vector, written as 4� 4 OpenGL-style matrix P [7].1 The
changeof the robot pose� P giventhe odometry information (xn ; zn ; � y ;n ), (xn +1 ; zn +1 ; � y ;n +1 ) and the registration
matrix R (� x;n ; � y ;n ; � z;n ) is calculated by solving:
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Therefore, calculating � P requires a matrix inversion. Finally, the 6D poseP n +1 is calculated by

Pn +1 = � P � P n

using the poses'matrix representations.

Item 2: Heuristic Initial Estimations for ICP Scan Matc hing. Initial estimations for ICP scanmatching
arecomputedwith an octreebasedheuristic. The algorithm setsinitially � P best to the 6-vector (t ; R (� x;n ; � y ;n ; � z;n )) =
(0; R (0)). Then, an octree OM for the nth 3D scan (model set M ) and an octree OD for the (n + 1)th 3D scan
(data set D) is generated(cf. Fig. 2). The estimation is done for search depth t 2 [tStart ; : : : ; tEnd ] in the octrees.
Hereby a a transformation � P best = (t ; R ) is computed as follows:

1. Calculate a maximal displacement and rotation � P max depending on the search depth t and currently best
transformation � P best .

2. For all discrete 6-tuples � P i 2 [� � P max ; � P max ] in the domain � P = (x; y; z; � x ; � y ; � z ) displaceOD by
� P i � � P � P n . Evaluate the matching of the two octreesby counting the number of overlapping cubesand
save the best transformation as � P best .

Finally, the scanposeis updated using matrix multiplication, i.e.,

Pn +1 = � P best � � P � P n :

Note: Step 2 requires 6 nested loops, but the computational requirements are bounded by the coarse-to-�ne
strategy inherited from the octree processing.The sizeof the octree cubesdecreasesexponentially with increasing
t. We start the algorithm with a cube size of 75 cm3 and stop when the cube size falls below 10 cm3. Fig. 2
shows two 3D scansand the corresponding octrees. Furthermore, note that this heuristic works best outdoors.
Due to the diversity of the environment the match of octree cubeswill show a signi�can t maximum, while indoor
environments with their many geometrysymmetriesand similarities, e.g., in a corridor, are in dangerof producing
many plausible matches.

Item 3: ICP for 3D Scan Matc hing. The 3D scanshave to be merged into one coordinate system. This
processis called registration. The following method registerspoint setsin a commoncoordinate system. It is called
Iterative ClosestPoints (ICP) algorithm [4]. Given two independently acquired setsof 3D points, M (model set)
and D (data set) which correspond to a single shape, we aim to �nd the transformation consisting of a rotation
R and a translation t which minimizes the following cost function:

1Note the bold-italic (vectors) and bold (matrices) notation. The conversion between vector representations, i.e., Euler angles, and
matrix representations is done by algorithms from [7].



Figure 2: Left: Two 3D point clouds. Middle: Octree corresponding to the black point cloud. Right: Octree based
on the blue points.

E (R ; t ) =
jM jX

i =1

jD jX

j =1

wi;j j jm i � (R d j + t )jj2 : (1)

wi;j is assigned1 if the i -th point of M describesthe samepoint in spaceas the j -th point of D . Otherwise wi;j is
0. Two things have to be calculated: First, the corresponding points, and second,the transformation (R , t ) that
minimizes E(R ; t ) on the baseof the corresponding points.

The ICP algorithm calculates iterativ ely the point correspondences.In each iteration step, the algorithm selects
the closestpoints as correspondencesand calculates the transformation (R ; t ) for minimizing equation (1). The
assumption is that in the last iteration step the point correspondencesare correct. Besl et al. prove that the
method terminates in a minimum [4]. However, this theorem doesnot hold in our case,sincewe usea maximum
tolerable distance dmax for associating the scan data. Such a threshold is required though, given that 3D scans
overlap only partially .

In every iteration, the optimal transformation (R , t ) has to be computed. Eq. (1) can be reducedto

E(R ; t ) /
1
N

NX

i =1

jjm i � (R d i + t )jj2 ; (2)

with N =
P jM j

i =1

P jD j
j =1 wi;j , since the correspondencematrix can be represented by a vector containing the point

pairs.

Four direct methods are known to minimize Eq. (2) [14]. In earlier work [19,24,25] we used a quaternion based
method [4], but the following one,basedon singular value decomposition (SVD), is robust and easyto implement,
thus we give a brief overview of the SVD-basedalgorithm. It was �rst published by Arun, Huang and Blostein [2].
The di�cult y of this minimization problem is to enforce the orthonormalit y of the matrix R . The �rst step of
the computation is to decouplethe calculation of the rotation R from the translation t using the centroids of the
points belonging to the matching, i.e.,
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and
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After substituting (3) and (4) into the error function, E(R ; t ) Eq. (2) becomes:
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with t = cm � R cd: (5)



The registration calculates the optimal rotation by R = VU T . Hereby, the matrices V and U are derived by the
singular value decomposition H = U�V T of a correlation matrix H . This 3 � 3 matrix H is given by
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iy ; : : : [2].

We have proposed and evaluated algorithms to accelerate ICP, namely point reduction and approximate kd-
trees [19,24,25]. They are usedhere, too.

Surface Extraction

We now turn to the issueof detecting drivable surfacein the 3D point clouds and their registration into a global
map, as delivered by the previously performed and described steps. We will �rst deal with single 3D scans,and
then go into spreading this out to the complete 3D model.

Lab eling Surface Poin ts in Single Scans. Basedon the ideaby Wulf et al. [32]wehavedesignedan algorithm
for labeling 
o or points in 3D scans.This is doneby computing the gradient betweena point p i;j = (' i ; r i;j ; zi;j ),
given in a cylindrical coordinate system, and its k-th neighbor in measurement order within the vertical sweep
plane, i.e., a search region around ' i , according to the following equation (cf. Fig. 3 middle, vertical cylindrical
coordinate system):

� i;j = arctan
�

zi;j � zi;j � k

r i;j � r i;j � k

�

with

�
1
2

� � � i;j <
3
2

� :

In comparison with a �xed threshold � (here: � = 20� ), each 3D point is assignedto one of the following three
groups, which has proved to be robust against uneven and non-horizontal ground:

1. � i;j < � : p i;j is a ground point

2. � � � i;j � � � � : p i;j is an object point

3. � � � < � i;j : pi;j is a ceiling point

A result of the ground segmentation is displayed in Fig. 4. The classi�cation of a scan point as \ground" based
on its neighborhood instead of performing a simple height comparison is essential due to potential inaccuracy in
the scannermount calibration and unknown starting pose, namely, the pitch angle of the robot, as well as the
signi�can t unevennessof the terrain.

Absolute height valuesof points do comeinto play when nearby drivable surfacepoints are to be mergedinto one
large drivable area. Our point classi�cation scheme leaves the possibility open that two nearby points in a 3D
model are both correctly labeled ground, but are of signi�can t di�erence in absolute height, such as on the two
horizontal neighborhoods of a vertical cli�. This needsto be checked when growing neighboring ground points to
drivable surfaces,as described next.
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Figure 3: Left: 3D scan planes due to the rotation of the 2D laser range �nder vs. 3D sweep planes. Right:
Interpretation example: One vertical sweepplane.

Figure 4: Left: A single outdoor 3D scanof a gravel path in the Botanical Garden. Note that the path is uneven.
Middle: Areas (triangles) between neighboring surfacepoints all labeled drivable are shadedin blue. Note �rst
that the area in front is very densewith surfacepoints, which are all labeled drivable. Note secondthat there are
somedisconnectedpatches of surfacepoints in and behind the path shoulder. Right: View into the model from
the samevirtual view point as before, but with the next scansalong the path registered. Su�cien tly large areas
su�cien tly densewith drivable surfacepoints are �lled with blue. (Again, the areain front is completely drivable.)
Note that the next scanhas been taken too far away from the one in front to connect the drivable surfaceareas,
so someof the objectively drivable path remains unlabeled here for lack of point density.

Merging Ground Poin ts in to Driv able Surface. Fig. 4, right, givesthe idea how we connect ground points
of one scan with the ones of its neighbors: The basic observation is that points labeled ground in individual
neighboring scansand denoting the samepatch of path in the environment would end up very closeto each other
after registration. So it has proved sound to grow regionsof drivable surfacearound areascontaining su�cien tly
many ground points in su�cien t density, disregarding from which individual scans their labels were derived.
Signi�cant di�erences in absolute point height are checked, as mentioned previously.

This strategy assumesthat neighboring scansoverlap su�cien tly well, to map the drivable surface su�cien tly
densely. While this is no completely new requirement (registration itself alsoneedssomeminimal overlap), we are
still experimenting with suitable combinations of point density requirements and e�cien t scandistances.

Results and Future Work

The experiments for this paper have beenmade with Kurt3D in the University of Osnabr•uck's Botanical Garden,
with the Kurt3D robot being steeredmanually (joystick control) betweenscanpoints. 3D scanshave beenauto-
matically acquired and matched, and drivable surfacepoints extracted. Fig. 5 presents the mapping result as well
as an impressionof the maximal di�erence in elevation.



Figure 5: Top left : Kurt3D on a gravel path of the Botanical Garden of University of Osnabr•uck. In the back-
ground, you seethe place of the path with maximal di�erence in elevation (about 6 meters, independently mea-
sured). Right: Top view of the automatically mapped area of the Botanical Garden. The grid on the right side
denotesan area of 20� 20 m2, blue boxescorrespond to scanposes.Most scanpoints in the top view correspond
to trees and bushes.The overall map has beengeneratedof 55 scansof about 85,000points each; the path length
was about 150m. Bottom left : Subsetof the overall map, consisting of drivable surfaceonly. The discontinuit y in
the middle part is due to very raggedground.

The online extraction of drivable surface has yielded su�cien tly much such area so that a subsequent planning
process(recall item 5 in our sequenceof SPLAM subtasksabove!) would have enoughopportunities for working.

We have encountered someproblems. As mentioned for Fig. 4, right, we need to make sure that scan distances
are su�cien tly closefor mapping a continuous path to a continuous surface. Very raggedsurfacelike cobblestone
with large and/or sharp gapsbetweenthe tiles or stoneswould not be classi�ed drivable by our method; in fact,
one may ask whether it objectively is drivable for our Kurt3D robot, or should rather be avoided. Finally, the
elevation valuesof our mapped points were quite inaccurate at the end of the path, due to a medium error quite
early in the drive. This angle error has then accumulated over the subsequent scans,which were locally correctly
registered. A�ordable inclinometers do not seemto solve the problem, as their expectedmeasurement error seems
to be in the sameorder of magnitude as the registration pitch angle error (somedegrees).We expect this type of
problem to be solved in a later stageof the overall SPLAM processby loop closing. Note that this error has not
a�ected the locally correct classi�cation of drivable surfaceareas.

Future work will continue to �ll up the list of SPLAM subtasksnamed earlier. To help localization and provide
waypoints in outdoor environments, we will integrate GPS information. To make drivable surfacedetection more

exible and more robust, we will add camera-basedpath detection.
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