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Abstract. A basic issue of mobile robotics is generating environment maps automatically. Outdoor
terrain is challenging since the ground is uneven and the surrounding is structured irregularly. In earlier
work, we have introduced 6D SLAM (Simultaneous Localization and Mapping) as a method to taking
all six DOF of robot poses (x, y, z translation; roll, pitch, yaw angles) into account. This paper adds
to 6D SLAM a method for extracting drivable surfaces in the 3D maps while they are being generated.
Experiments have been made in a Botanical Garden, with drivable surfaces consisting of gravel paths
or lawn, both involving significant slope.

Introduction

Figure 1: The mobile robot Kurt3D.

Digital 3D models of the environment are needed in
rescue, exploration and inspection robotics, industrial
automation, facility management, agriculture and ar-
chitecture. Many robotic tasks require highly precise
environment maps as well. Building them manually
is tedious: Thrun et al. report a time of about one
week hard work for creating a 2D map of the museum
in Bonn for RHINO [26]. It is even harder when 3D
maps are needed, and is getting nearly impossible when
mapping general outdoor environments. Therefore, au-
tomatic mapping is crucial in robotics. Autonomous
mobile robots equipped with 3D laser scanners are well
suited for the gaging task [18]. Contrary to indoor ap-
plications, robot poses in natural outdoor environments
also involve pitch, roll and elevation, turning pose esti-
mation into a problem in six mathematical dimensions.
6D SLAM [18] considers all of these six dimensions for
the robot pose while generating 3D maps. In our experiments we use the mobile robot Kurt3D (Fig. 1, and Fig.
5, left). It is equipped with a 3D laser scanner, which is built on the basis of a SICK 2D range finder by extension
with a mount and a small servo motor [17, 23]).



Mapping autonomously outdoor terrain adds another complication that is not present in typical indoor SLAM:
Finding of drivable surfaces ahead. Indoor SLAM can typically assume that the robot may get along and extend
its map wherever no obstacle is visible. This strategy has always required some care in the vicinity of staircases,
but is good enough in many buildings. In outdoor terrain, actively looking for navigable surface is mandatory, as
ragged ground, potholes, or steps are to be expected at any place.

This paper adds to our previous work on 6D SLAM the functionality of detecting geometrically navigable surfaces
in the 3D map that is being built. This information may then be used to determine the next pose or poses to
steer to. To make the paper self-sufficient, we include a brief review of the complete 6D SLAM process in which
the surface interpretation process is embedded; for details of 6D SLAM, please refer to previous publications,
i.e., [17, 18].

Related Work

SLAM. SLAM algorithms differ depending on the map type. State of the art for metric maps are probabilistic
methods, where the robot has probabilistic motion and uncertain perception models. By integrating these two
distributions with a Bayes filter, e.g., Kalman or particle filter, it is possible to localize the robot. Mapping is
often regarded as an extension to this estimation problem. Beside the robot pose, positions of landmarks are
estimated. Closed loops, i.e., a second encounter of a previously visited area of the environment, play a special
role here. Once detected, they enable the algorithms to bound the error by deforming the already mapped area
such that a topologically consistent model is created. However, there is no guarantee for a correct model. Several
strategies exist for solving SLAM. Thrun reviews in [27] existing techniques, i.e., maximum likelihood estimation [9],
expectation maximization [8,28], extended Kalman filter [6] or (sparse extended) information filter [30]. In addition
to these methods, FastSLAM [29] that approximates the posterior probabilities, i.e., robot poses, by particles, and
the method of Lu and Milios on the basis of IDC scan matching [15] exist.

In principle, these probabilistic methods are extendable to 6D. However, no reliable feature extraction nor a strategy
for reducing the computational costs of multi hypothesis tracking, e.g., FastSLAM, that grows exponentially with
the degrees of freedom, has been published to our knowledge.

3D Mapping. Instead of using 3D scanners, which yield consistent 3D scans in the first place, some groups have
attempted to build 3D volumetric representations of environments with 2D laser range finders. Thrun et al. [29],
Früh et al. [10] and Zhao et al. [33] use two 2D laser scanners finders for acquiring 3D data. One laser scanner
is mounted horizontally, the other vertically. The latter one grabs a vertical scan line which is transformed into
3D points based on the current robot pose. Since the vertical scanner is not able to scan sides of objects, Zhao et
al. use two additional, vertically mounted 2D scanners, shifted by 45◦ to reduce occlusions [33]. The horizontal
scanner is used to compute the robot pose. The precision of 3D data points depends on that pose and on the
precision of the scanner.

A few other groups use highly accurate, expensive 3D laser scanners [1, 11, 22]. The RESOLV project aimed at
modeling interiors for virtual reality and tele-presence [22]. They used a RIEGL laser range finder on robots and the
ICP algorithm for scan matching [4]. The AVENUE project develops a robot for modeling urban environments [1],
using a CYRAX scanner and a feature-based scan matching approach for registering the 3D scans. Nevertheless,
in their recent work they do not use data of the laser scanner in the robot control architecture for localization [11].
The group of M. Hebert has reconstructed environments using the Zoller+Fröhlich laser scanner and aims to build
3D models without initial position estimates, i.e., without odometry information [12].

Recently, different groups employ rotating SICK scanners for acquiring 3D data [13,23,31,32]. Wulf et al. let the
scanner rotate around the vertical axis. They acquire 3D data while moving, thus the quality of the resulting map
crucially depends on the pose estimate that is given by inertial sensors, i.e., gyros [32]. In addition, their SLAM
algorithms do not consider all six degrees of freedom.

Other approaches use information of CCD-cameras that provide a view of the robot’s environment [5, 21]. Nev-
ertheless, cameras are difficult to use in natural environments with changing light conditions. Camera-based
approaches to 3D robot vision, e.g., stereo cameras and structure from motion, have difficulties providing reliable
navigation and mapping information for a mobile robot in real-time. Thus some groups try to solve 3D modeling
by using planar scanner based SLAM methods and cameras, e.g., in [5].



Autonomous Outdoor Driving. Much work has been done in the area of autonomous outdoor driving.
Batavia and Singh [3] navigate their robot in locally smooth hilly terrain and use a yawing SICK laser range
scanner in a fixed pitching angle towards the the ground. They use an object vs. freespace classification for
driving. Similarly, Patel et al. [20] use also a yawable SICK scanner to classify drivable surfaces. Their work
focuses on controlling the yawable scanner to acquire the necessary depth information while driving. They also
use local gradients to classify drivable surfaces.

A good overview of the state of the art in military context for autonomous navigation in highly unstructured terrain
is given in [16]. Two classes of algorithms are discussed: First, obstacle avoidance using ladar (for short range) or
stereo camera (for long range). Second, terrain cover classification using a stereo camera for color analysis or ladar
for range texture analysis. The advantages and disadvantages of each kind of sensor for different applications is
discussed.

The Context: Outdoor SPLAM

Our drivable surface extraction method is part of an overall robot control system for Simultaneous Planning,
Localization, and Mapping (SPLAM) in outdoor environments, which is currently under development. Before we
describe the method, we will sketch this context, into which it has to fit.

The general idea is to do SLAM indoor or outdoor or in mixed indoor/outdoor environments, and integrate into it
a planning process for selecting the next pose to move to for making the map under development more complete.
This planning process should generate the next view pose and plan the path to go there under reactive execution;
alternatively, it should be able to respond to other requests that the robot receives, interrupting the SLAM process
for some time. The main difference to state-of-the-art SLAM, as briefly recapitulated in the previous section, lies
in two points: First, we are not restricted to 2D maps of indoor environments, but do full 6D SLAM generating 3D
maps; and second, we integrate into it a pose planning process allowing the SLAM process to be optimized explicitly
according to criteria like expected time or expected path length. In previous work [24], we have demonstrated an
instance of that scenario, which was restricted to a flat and continuous floor (i.e., regular indoor environments),
and which has used a specialized next-best-view planner for the planning part.

Our outdoor SPLAM procedure consists of the following subtasks:

1. Extrapolate the odometry readings to all six degrees of freedom using previous registration matrices [18].

2. Find a heuristic pose update using octrees [18].

3. Use the ICP algorithm [4] to match the 3D scans. Hereby use point reduction and approximate kD-tree
search to accelerate the scan matching [17].

4. Extract the drivable surface from the current 3D model.

5. Plan the next scan pose and a path to go there from the current pose along a drivable surface.

6. Execute this path in closed-loop control mode.

7. Find “closed loops” using octrees and, if a closed loop is detected, distribute any occurring error over the
3D scans forming the loop [25].

8. Use a global relaxation method off-line to create highly precise 3D maps [24].

Of this list, items 1–6 are executed in a looping fashion, while the closed loop detection (item 7) is only executed
if the current pose estimation is such that a closed loop is possible; the global relaxation (item 8) is only executed
off-line on the map consisting of all scans.

As the citations in the item list suggests, we have presented solutions to many of these subtasks in previous work,
drivable surface extraction being the first one open on the list. Before we present our solution to this problem in
the next section, the following subsections will recapitulate our solutions to the preceding items 1–3, to set the
context for the surface extraction task. Readers familiar with this previous work may safely skip the rest of this
section. Our solutions to items 6 and 7 will not be recapitulated here as they are not required for understanding
the contribution of this paper. Please refer to the cited literature.



Item 1: Odometry Extrapolation. We first extrapolate the odometry readings to all six degrees of freedom
using previous registration matrices. The robot pose is the 6-vector P = (x, y, z, θx, θy, θz) or, equivalently the
tuple containing the rotation matrix and translation vector, written as 4×4 OpenGL-style matrix P [7].1 The
change of the robot pose ∆P given the odometry information (xn, zn, θy,n), (xn+1, zn+1, θy,n+1) and the registration
matrix R(θx,n, θy,n, θz,n) is calculated by solving:
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Therefore, calculating ∆P requires a matrix inversion. Finally, the 6D pose Pn+1 is calculated by

Pn+1 = ∆P · Pn

using the poses’ matrix representations.

Item 2: Heuristic Initial Estimations for ICP Scan Matching. Initial estimations for ICP scan matching
are computed with an octree based heuristic. The algorithm sets initially ∆P best to the 6-vector (t, R(θx,n, θy,n, θz,n)) =
(0, R(0)). Then, an octree OM for the nth 3D scan (model set M) and an octree OD for the (n + 1)th 3D scan
(data set D) is generated (cf. Fig. 2). The estimation is done for search depth t ∈ [tStart, . . . , tEnd] in the octrees.
Hereby a a transformation ∆P best = (t, R) is computed as follows:

1. Calculate a maximal displacement and rotation ∆P max depending on the search depth t and currently best
transformation ∆P best.

2. For all discrete 6-tuples ∆P i ∈ [−∆P max, ∆P max] in the domain ∆P = (x, y, z, θx, θy, θz) displace OD by
∆Pi · ∆P ·Pn. Evaluate the matching of the two octrees by counting the number of overlapping cubes and
save the best transformation as ∆P best.

Finally, the scan pose is updated using matrix multiplication, i.e.,

Pn+1 = ∆Pbest · ∆P · Pn.

Note: Step 2 requires 6 nested loops, but the computational requirements are bounded by the coarse-to-fine
strategy inherited from the octree processing. The size of the octree cubes decreases exponentially with increasing
t. We start the algorithm with a cube size of 75 cm3 and stop when the cube size falls below 10 cm3. Fig. 2
shows two 3D scans and the corresponding octrees. Furthermore, note that this heuristic works best outdoors.
Due to the diversity of the environment the match of octree cubes will show a significant maximum, while indoor
environments with their many geometry symmetries and similarities, e.g., in a corridor, are in danger of producing
many plausible matches.

Item 3: ICP for 3D Scan Matching. The 3D scans have to be merged into one coordinate system. This
process is called registration. The following method registers point sets in a common coordinate system. It is called
Iterative Closest Points (ICP) algorithm [4]. Given two independently acquired sets of 3D points, M (model set)
and D (data set) which correspond to a single shape, we aim to find the transformation consisting of a rotation
R and a translation t which minimizes the following cost function:

1Note the bold-italic (vectors) and bold (matrices) notation. The conversion between vector representations, i.e., Euler angles, and
matrix representations is done by algorithms from [7].



Figure 2: Left: Two 3D point clouds. Middle: Octree corresponding to the black point cloud. Right: Octree based
on the blue points.

E(R, t) =

|M |
∑

i=1

|D|
∑

j=1

wi,j ||mi − (Rdj + t)||
2
. (1)

wi,j is assigned 1 if the i-th point of M describes the same point in space as the j-th point of D. Otherwise wi,j is
0. Two things have to be calculated: First, the corresponding points, and second, the transformation (R, t) that
minimizes E(R, t) on the base of the corresponding points.

The ICP algorithm calculates iteratively the point correspondences. In each iteration step, the algorithm selects
the closest points as correspondences and calculates the transformation (R, t) for minimizing equation (1). The
assumption is that in the last iteration step the point correspondences are correct. Besl et al. prove that the
method terminates in a minimum [4]. However, this theorem does not hold in our case, since we use a maximum
tolerable distance dmax for associating the scan data. Such a threshold is required though, given that 3D scans
overlap only partially.

In every iteration, the optimal transformation (R, t) has to be computed. Eq. (1) can be reduced to

E(R, t) ∝
1

N

N∑

i=1

||mi − (Rdi + t)||2 , (2)

with N =
∑|M |

i=1

∑|D|
j=1

wi,j , since the correspondence matrix can be represented by a vector containing the point
pairs.

Four direct methods are known to minimize Eq. (2) [14]. In earlier work [19, 24, 25] we used a quaternion based
method [4], but the following one, based on singular value decomposition (SVD), is robust and easy to implement,
thus we give a brief overview of the SVD-based algorithm. It was first published by Arun, Huang and Blostein [2].
The difficulty of this minimization problem is to enforce the orthonormality of the matrix R. The first step of
the computation is to decouple the calculation of the rotation R from the translation t using the centroids of the
points belonging to the matching, i.e.,
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1

N
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1

N
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and

M ′ = {m′
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After substituting (3) and (4) into the error function, E(R, t) Eq. (2) becomes:
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with t = cm −Rcd. (5)



The registration calculates the optimal rotation by R = VUT . Hereby, the matrices V and U are derived by the
singular value decomposition H = UΛVT of a correlation matrix H. This 3 × 3 matrix H is given by
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with Sxx =
∑N

i=1
m′

ixd′ix, Sxy =
∑N

i=1
m′

ixd′iy, . . . [2].

We have proposed and evaluated algorithms to accelerate ICP, namely point reduction and approximate kd-
trees [19, 24, 25]. They are used here, too.

Surface Extraction

We now turn to the issue of detecting drivable surface in the 3D point clouds and their registration into a global
map, as delivered by the previously performed and described steps. We will first deal with single 3D scans, and
then go into spreading this out to the complete 3D model.

Labeling Surface Points in Single Scans. Based on the idea by Wulf et al. [32] we have designed an algorithm
for labeling floor points in 3D scans. This is done by computing the gradient between a point pi,j = (ϕi, ri,j , zi,j),
given in a cylindrical coordinate system, and its k-th neighbor in measurement order within the vertical sweep
plane, i.e., a search region around ϕi, according to the following equation (cf. Fig. 3 middle, vertical cylindrical
coordinate system):

αi,j = arctan

(
zi,j − zi,j−k

ri,j − ri,j−k

)

with

−
1

2
π ≤ αi,j <

3

2
π .

In comparison with a fixed threshold τ (here: τ = 20◦), each 3D point is assigned to one of the following three
groups, which has proved to be robust against uneven and non-horizontal ground:

1. αi,j < τ : pi,j is a ground point

2. τ ≤ αi,j ≤ π − τ : pi,j is an object point

3. π − τ < αi,j : pi,j is a ceiling point

A result of the ground segmentation is displayed in Fig. 4. The classification of a scan point as “ground” based
on its neighborhood instead of performing a simple height comparison is essential due to potential inaccuracy in
the scanner mount calibration and unknown starting pose, namely, the pitch angle of the robot, as well as the
significant unevenness of the terrain.

Absolute height values of points do come into play when nearby drivable surface points are to be merged into one
large drivable area. Our point classification scheme leaves the possibility open that two nearby points in a 3D
model are both correctly labeled ground, but are of significant difference in absolute height, such as on the two
horizontal neighborhoods of a vertical cliff. This needs to be checked when growing neighboring ground points to
drivable surfaces, as described next.
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Figure 3: Left: 3D scan planes due to the rotation of the 2D laser range finder vs. 3D sweep planes. Right:
Interpretation example: One vertical sweep plane.

Figure 4: Left : A single outdoor 3D scan of a gravel path in the Botanical Garden. Note that the path is uneven.
Middle: Areas (triangles) between neighboring surface points all labeled drivable are shaded in blue. Note first
that the area in front is very dense with surface points, which are all labeled drivable. Note second that there are
some disconnected patches of surface points in and behind the path shoulder. Right : View into the model from
the same virtual view point as before, but with the next scans along the path registered. Sufficiently large areas
sufficiently dense with drivable surface points are filled with blue. (Again, the area in front is completely drivable.)
Note that the next scan has been taken too far away from the one in front to connect the drivable surface areas,
so some of the objectively drivable path remains unlabeled here for lack of point density.

Merging Ground Points into Drivable Surface. Fig. 4, right, gives the idea how we connect ground points
of one scan with the ones of its neighbors: The basic observation is that points labeled ground in individual
neighboring scans and denoting the same patch of path in the environment would end up very close to each other
after registration. So it has proved sound to grow regions of drivable surface around areas containing sufficiently
many ground points in sufficient density, disregarding from which individual scans their labels were derived.
Significant differences in absolute point height are checked, as mentioned previously.

This strategy assumes that neighboring scans overlap sufficiently well, to map the drivable surface sufficiently
densely. While this is no completely new requirement (registration itself also needs some minimal overlap), we are
still experimenting with suitable combinations of point density requirements and efficient scan distances.

Results and Future Work

The experiments for this paper have been made with Kurt3D in the University of Osnabrück’s Botanical Garden,
with the Kurt3D robot being steered manually (joystick control) between scan points. 3D scans have been auto-
matically acquired and matched, and drivable surface points extracted. Fig. 5 presents the mapping result as well
as an impression of the maximal difference in elevation.



Figure 5: Top left : Kurt3D on a gravel path of the Botanical Garden of University of Osnabrück. In the back-
ground, you see the place of the path with maximal difference in elevation (about 6 meters, independently mea-
sured). Right : Top view of the automatically mapped area of the Botanical Garden. The grid on the right side
denotes an area of 20× 20 m2, blue boxes correspond to scan poses. Most scan points in the top view correspond
to trees and bushes. The overall map has been generated of 55 scans of about 85,000 points each; the path length
was about 150m. Bottom left : Subset of the overall map, consisting of drivable surface only. The discontinuity in
the middle part is due to very ragged ground.

The online extraction of drivable surface has yielded sufficiently much such area so that a subsequent planning
process (recall item 5 in our sequence of SPLAM subtasks above!) would have enough opportunities for working.

We have encountered some problems. As mentioned for Fig. 4, right, we need to make sure that scan distances
are sufficiently close for mapping a continuous path to a continuous surface. Very ragged surface like cobblestone
with large and/or sharp gaps between the tiles or stones would not be classified drivable by our method; in fact,
one may ask whether it objectively is drivable for our Kurt3D robot, or should rather be avoided. Finally, the
elevation values of our mapped points were quite inaccurate at the end of the path, due to a medium error quite
early in the drive. This angle error has then accumulated over the subsequent scans, which were locally correctly
registered. Affordable inclinometers do not seem to solve the problem, as their expected measurement error seems
to be in the same order of magnitude as the registration pitch angle error (some degrees). We expect this type of
problem to be solved in a later stage of the overall SPLAM process by loop closing. Note that this error has not
affected the locally correct classification of drivable surface areas.

Future work will continue to fill up the list of SPLAM subtasks named earlier. To help localization and provide
waypoints in outdoor environments, we will integrate GPS information. To make drivable surface detection more
flexible and more robust, we will add camera-based path detection.
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