Overview | Package | Class | Source | Class tree | Glossary | UnrealScript Documentation |
previous class next class | frames no frames |
00001 00002 00003 00004 00005 00006 00007 00008 00009 00010 00011 00012 00013 00014 00015 00016 00017 00018 00019 00020 00021 00022 00023 00024 00025 00026 00027 00028 00029 00030 00031 00032 00033 00034 00035 00036 00037 00038 00039 00040 00041 00042 00043 00044 00045 00046 00047 00048 00049 00050 00051 00052 00053 00054 00055 00056 00057 00058 00059 00060 00061 00062 00063 00064 00065 00066 00067 00068 00069 00070 00071 00072 00073 00074 00075 00076 00077 00078 00079 00080 00081 00082 00083 00084 00085 00086 00087 00088 00089 00090 00091 00092 00093 00094 00095 00096 00097 00098 00099 00100 00101 00102 00103 00104 00105 00106 00107 00108 00109 00110 00111 00112 00113 00114 00115 00116 00117 00118 00119 00120 00121 00122 00123 00124 00125 00126 00127 00128 00129 00130 00131 00132 00133 00134 00135 00136 00137 00138 00139 00140 00141 00142 00143 00144 00145 00146 00147 00148 00149 00150 00151 00152 00153 00154 00155 00156 00157 00158 00159 00160 00161 00162 00163 00164 00165 00166 00167 00168 00169 00170 00171 00172 00173 00174 00175 00176 00177 00178 00179 00180 00181 00182 00183 00184 00185 00186 00187 00188 00189 00190 00191 00192 00193 00194 |
//================================================= // This class simulates a telescopic joint. // // Approach: the telescopic movemeent is simulated by a tow-bar linkage showed below: // o // / \ // Bar1 / \ Bar2 // / \ // Part1 I=o=I I=o=I Part2 // // By turning Bar1 and Bar2 together we can generate the tranlation movement // between Part1 and Part2. // // Usage: We use KSlider as a normal Joint. In the current version, there are some limitations // because we must use the ParentPos and SelfPos in the ini file to define how // Part1 and Part2 are connected and the maximal telescopic distance. // 1) In the ini file we always define the extreme situation of maximum telescopic distance. // 2) The ParentPos and SelfPos are used to calculate the Part2's location relative to Part1. // 3) The inner joint of Bar1 and Part1 is always on the CENTER of Part1. // And the same happens with Bar2 and Part2. The Joint of Bar1 and Bar2 is placed on // the middle position of the two previous joints. // 4) It's the user's resposibility to carefully define the collision meshes for Part1 and Part2 // to ensure no collision will happen during the translation movement. // *HINT:* Carefully defining the center of Part1 and Part2 will make the configuration much easier. // I suggest you do it in this way: under the case of zero telescopic distance, we define // the center of Part1 and Part2 spatially overlay to each other. Therefore, the ParentPos // will be (0,0,0) and SelfPos is (d,0,0) where 'd' is the maximum telescopic distance. // // In the future, if we use Joint type in the configuration as I previously suggested, we will be able // to directly define the telescopic capability in the type definition. Then we will be able to use // KSlider exactly as a normal joint. In the ini file we define the case of zero telescopic distance, // and the first inner joint is defined by ParentPos and the second is defined by SelfPos. They overlay // to each other by default. And the middle joint will be palce as perpendicular to Part1 and Part2. // The distance between middle joint and the first/second joint will be half of the max telescopic distance. // // Control: DRIVE {Name xxx} {Value xxx} {Order xx} // where Name is KSlider's name; Value is the telescopic distance in meter, and Order can be 0 or 10 // that in turn represent absoluate and relative translation control. //================================================= class KSlider extends KDHinge; var float DesiredDistance; var float barLength; var bool bInProtection; var float lastCA, midLastCA, termLastCA; var float spinSpeed, midSpinSpeed, termSpinSpeed; var KActor Part1, Part2, Part; var KDHinge MidJoint, TermJoint; simulated function init1(Actor a1, Vector p1, Vector ax1, Vector sax1, Vector p2, Vector ax2, Vector sax2) { local vector RotX, RotY, RotZ, offset; Part1 = spawn(class'USARBot.SlidePart',a1,,a1.Location,a1.Rotation); KConstraintActor1 = a1; KPos1 = vect(0,0,0); KPriAxis1 = ax1; KSecAxis1 = sax1; KConstraintActor2 = Part1; KPos2 = vect(0,0,0); KPriAxis2 = ax2; KsecAxis2 = sax2; SetPhysics(PHYS_Karma); GetAxes(a1.Rotation,RotX,RotY,RotZ); offset = p1 - p2; Part2 = spawn(class'USARBot.SlidePart', Part1,, a1.Location + offset.X*RotX + offset.Y*RotY + offset.Z*RotZ,a1.Rotation); MidJoint = spawn(class'USARBot.KDHinge',Part1); MidJoint.KConstraintActor1 = Part1; MidJoint.KPos1 = offset/100; MidJoint.KPriAxis1 = ax1; MidJoint.KSecAxis1 = sax1; MidJoint.KConstraintActor2 = Part2; MidJoint.KPos2 = offset/-100; MidJoint.KPriAxis2 = ax2; MidJoint.KSecAxis2 = sax2; MidJoint.SetPhysics(PHYS_Karma); offset.X *= 1-ax1.X; offset.Y *= 1-ax1.Y; offset.Z *= 1-ax1.Z; barLength = VSize(offset)/2; } simulated function init2(Vector p1, Vector ax1, Vector sax1, Actor a2, Vector p2, Vector ax2, Vector sax2) { TermJoint = spawn(class'USARBot.KDHinge',Part2); TermJoint.KConstraintActor1 = Part2; TermJoint.KPos1 = vect(0,0,0); TermJoint.KPriAxis1 = ax1; TermJoint.KSecAxis1 = sax1; TermJoint.KConstraintActor2 = a2; TermJoint.KPos2 = vect(0,0,0); TermJoint.KPriAxis2 = ax2; TermJoint.KSecAxis2 = sax2; TermJoint.SetPhysics(PHYS_Karma); lastCA = KCurrentAngle; MidLastCA = MidJoint.KCurrentAngle; TermLastCA = TermJoint.KCurrentAngle; SetTimer(1,true); } simulated function Update() { UpdateConstraint(); KConstraintActor1.KWake(); } simulated function float getDistance() { return 2*barLength*Cos(PI*KCurrentAngle/32768); } simulated function UpdateConstraint() { //log("DesiredDistance="$DesiredDistance); if (DesiredDistance>2*barLength) DesiredDistance = 2*barLength; else if (DesiredDistance<0) DesiredDistance = 0; KDesiredAngle = -Acos(DesiredDistance/(2*barLength))*32768/PI; //absolute angle KUpdateConstraintParams(); MidJoint.KDesiredAngle = -2*KDesiredAngle; MidJoint.KMaxTorque = 2*KMaxTorque; if (KHingeType==HT_Motor) MidJoint.KDesiredAngVel = -2*KDesiredAngVel; else MidJoint.KDesiredAngVel = 2*KDesiredAngVel; MidJoint.KProportionalGap = KProportionalGap; MidJoint.KHingeType = KHingeType; MidJoint.KUpdateConstraintParams(); TermJoint.KDesiredAngle = KDesiredAngle; TermJoint.KMaxTorque = KMaxTorque; TermJoint.KDesiredAngVel = KDesiredAngVel; TermJoint.KProportionalGap = KProportionalGap; TermJoint.KHingeType = KHingeType; TermJoint.KUpdateConstraintParams(); } simulated function Tick(float delta) { if (!bInProtection && (KCurrentAngle>16384 || KCurrentAngle<-16384)) { bInProtection = True; KHingeType = HT_Controlled; if (KCurrentAngle>16384) KDesiredAngle = 16380; else KDesiredAngle = -16380; KDesiredAngVel = 4000; UpdateConstraint(); //log("Adj:"@KDesiredAngle@KDesiredAngVel); } if (bInProtection && KCurrentAngle<16384 && KCurrentAngle>-16384) bInProtection = false; //log(DesiredDistance@getDistance()); } // adjust the joint spin speed to ensure the synchronized joints movement simulated function timer() { spinSpeed = KCurrentAngle - lastCA; MidSpinSpeed = MidJoint.KCurrentAngle - MidLastCA; TermSpinSpeed = TermJoint.KCurrentAngle - TermLastCA; if (Abs(KDesiredAngle-KCurrentAngle)>200 && Abs(MidSpinSpeed/spinSpeed+2)>0.05) { if (KHingeType==HT_Motor) MidJoint.KDesiredAngVel = KDesiredAngVel*4*spinSpeed/MidSpinSpeed; else MidJoint.KDesiredAngVel = -KDesiredAngVel*4*spinSpeed/MidSpinSpeed; MidJoint.KUpdateConstraintParams(); //log(Abs(KDesiredAngle-KCurrentAngle)@spinSpeed@MidSpinSpeed@MidJoint.KDesiredAngVel); } lastCA = KCurrentAngle; MidLastCA = MidJoint.KCurrentAngle; TermLastCA = TermJoint.KCurrentAngle; } simulated event Destroyed() { Part2.Destroy(); TermJoint.Destroy(); Part1.Destroy(); MidJoint.Destroy(); Super.Destroyed(); } |
Overview | Package | Class | Source | Class tree | Glossary | UnrealScript Documentation |
previous class next class | frames no frames |