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Summary . We discussonline strategies for visibilit y-based searding for an object
hidden behind a corner, using Kurt3D, a real autonomous mobile robot. This task
is closely related to a number of well-studied problems. Our robot usesa three-
dimensional laser scanner in a stop, scan, plan, go fashion for building a virtual
three-dimensional environment. Besides planning trajectories and avoiding obsta-
cles, Kurt3D is capable of identifying objects like a chair. We derive a practically
useful and asymptotically optimal strategy that guaranteesa competitiv e ratio of 2,
which di ers remarkably from the well-studied scenariowithout the need of stopping
for surveying the environment. Our strategy is used by Kurt3D, documented in a
separate video.
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1 Intro duction

Visibilit y Problems. Visibilit y-based problems of surveying, guarding, or
searding have a long-standing tradition in the area of computational opti-
mization; they may very well be considereda eld of their own. Using station-
ary positions for guarding a region is the well-known art gallery problem[15].
The watchman problem[3,18,19] asksfor a short tour along which one mobile
guard can seethe ertire region. If the region is unknown in advance, we are
faced with the online watchman problem For a simple polygon, Ho mann et
al. [7] achieve a constart competitiv e ratio of 26.5, while Alberset al. [1] show
that no constart competitiv e factor exists for a region with holes, and un-
bounded aspect ratio. Kalyanasundaramand Pruhs [12] considerthe problem
in graphs and give a competitiv e factor of 16.
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In the context of geometricsearding, a crucial issueis the question of how
to look around a corner: Given a starting position, and a known distance to
a corner, how should one move in order to seea hidden object (or the other
part of the wall) as quickly as possible?This problem was solved by Icking
et al. [9,10] who show that an optimal strategy can be characterized by a
di erential equation that yields a competitiv e factor of 1.2121..., which is
optimal. Note that actually using this solution requires numerical evaluation.

An Autonomous Mobile Rob ot. From the practical side, our work
is motivated by an actual application in robotics: The Fraunhofer Institute
for Autonomous Intelligent Systems(AlS) has developed autonomous mobile
robots that can survey their environment by virtue of a high-resolution, 3D
laserscanner[17]. By merging seweral 3D scansacquiredin a stop, scan,plan,
go fashion, the robot Kurt3D builds a virtual 3D ervironment that allows it
to navigate, avoid obstacles,and detect objects [14]. This makesthe visibilit y
problems described above quite practical, as actually using good tra jectories
is now possibleand desirable.

However, while human mobile guards are generally assumedto have full
vision at all times, our autonomous robot has to stop and take sometime
for taking a survey of its environment. This makes the objective function
(minimize total time to locate an object or explore a region) a sum of travel
time and scantime; a somewhatrelated problem is searding for an object on
aline in the presenceof turn cost[5], which turns out to be a generalization of
the classicallinear seard problem. Somewhatsurprisingly, scancost (however
small it may be) causesa crucial di erence to the well-studied casewithout
scancost, evenin the limit of in nitesimally small scantimes.

Independent from our work, the problem of looking around a corner in
the presenceof scan cost has beenstudied by Isler et al. [11], who described
two deterministic strategiesachieving competitiv e ratios of 3.14and 2.22,and
also considereda probabilistic framework dealing with prior knowledge about
the possiblevalues of corners. We improve on these results with a di erent,
asymptotically optimal strategy, and prove a matching lower bound.

Other Related Work. Vishilit y-based navigation of robots involves a
variety of di erent aspects. For example, Efrat et al. [4] study the task of de-
veloping strategiesfor tracking and capturing a visible target with known tra-
jectory, while maintaining line-of-sight among obstacles.Kutulak os et al. [13]
considerthe task of vision-guided exploration, where the robot is assumedto
move about freely in three dimensions,among various obstacles.

Our Results. The main objective of this paper is to demonstrate that
technology has reached the stage of actually applying previous theoretical
studies, at the sametime triggering new algorithmic researd. We hope that
this will highlight the need for and the opportunities of closer interaction
betweentheoreticians and practitioners. In particular, we describethe problem
of online searding by a real autonomousrobot, for an object (a chair) hidden
behind a corner, which is at distanced from the robot's starting position. Our
mathematical results are as follows:
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We show that for an initial distanceof at leastd 1= from the corner, a
competitiv e ratio of 2 cannot be achieved. This implies a lower bound
of 2 on the competitiv e ratio by any one strategy, and provesthat there is
an important distinction from the casewithout scancost.

We describe a heuristic strategy that is fast to evaluate and easyto im-
plemert in real life.

We show that this strategy is asymptotically optimal by proving that for
large distances,the competitiv e ratio convergesto 2.

We give additional numerical evidenceshowing that the performance of
our strategy is within about 2% of the optimum.

Most importantly, we describe how our strategy can actually be used by
Kurt3D, a real mobile autonomousrobot.

Further documerntation of our work is provided by a video [6] that is also
available at the authors' web addresses.

The rest of this paper is organized as follows. In Section 2, we describe
the technical details, properties, and capabilities of Kurt3D, an autonomous
mobile robot that wasusedin our experiments. Section 3 provides mathemat-
ical results on the problem arising from Kurt searding for a hidden object.
Section 4 givesa description of how our results are usedin practice. The nal
Section 5 provides somedirections for future researd.

2 The Autonomous Mobile Rob ot

In this sectionwe describe technical details and background of the autonomous
mobile robot Kurt3D.

2.1 The Kurt3D Rob ot Platform

Kurt3D (Figure 1, top left) is a mobile robot platform with a size of 45 cm
(length)  33cm (width) 26 cm (height) and a weight of 15.6kg. Equipped
with the 3D laserrange nder the height increasesto 47 cm and the weight
to 22.6kg.* Kurt3D's maximum velocity is 5.2 m/s (autonomously cortrolled
4.0 m/s). Two 90 W motors are usedto power the 6 wheels,where the front
and rear wheelshave no tread pattern to enhancerotating. Kurt3D operates
for about 4 hours with one battery (28 NiMH cells, capacity: 4500 mAh)
charge. The core of the robot is a Pentium-I 11-600 MHz with 384 MB RAM.
An embedded 16-Bit CMOS microcortroller is usedto control the motor.

2.2 The AIS 3D Laser Range Finder

The AIS 3D laserrange nder (Figure 1, top right) [16,17]is built on the basis
of a 2D range nder by extensionwith a mount and a standard servo motor.

4Videos of the exploration with the autonomous mobile robot can be found at
http://www.ais.fhg.de/ARC/kur  t3D/ index .htm|
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The 2D laserrange nder is attached in the certer of rotation to the mount
for achieving a controlled pitch motion. The serw is connectedon the left
side (Figure 1, top middle). The 3D laserscanneroperatesup to 5h (Scanner:
17 W, 20NiMH cellswith a capacity of 4500mAh, Serw: 0.85W, 4.5V with
batteries of 4500mAh) on one battery padk.

Fig. 1. Top left: The autonomous mobile robot Kurt3D equipped with the 3D
scanner. Top right: The AIS 3D laser range nder. lIts technical basisis a SICK 2D
laser range nder (LMS-200). Bottom row, left: A scanned sceneas depth image.
Middle and right: Scannedscenesas point cloud viewed with a camera orientation
towards the door.

The area of 180 (h) 120 (v) is scannedwith dierent horizontal (181,
361,721 pts.) and vertical (210, 420 pts.) resolutions. A plane with 181 data
points is scannedin 13 ms by the 2D laser range nder (rotating mirror
device). Planes with more data points, e.g., 361, 721, double or quadruple
this time. Thus, a scanwith 181 210 data points needs2.8 seconds.In
addition to the distance measuremem, the 3D laser range nder is capable
of quantifying the amount of light returning to the scanner,i.e., re ectance
data [14]. Figure 1 (bottom left) shonsa scannedsceneasdepth image,created
by o -screen rendering from the 3D data points (Figure 1, bottom middle) by
an OpenGibaseddrawing module.



Online Searding with an Autonomous Robot 5
2.3 Basic 3D Scanner Software

The basis of the scan matching algorithms and the reliable robot cortrol are
algorithms for reducing points, line detection, surface extraction and object
segmetation. Next we give a brief description of these algorithms. Details
can be found in [16].

The scanneremits the laser beamsspherically from one center, suc that
the data points closeto the sourceare more dense.The rst stepis to reduce
the data. Therefore, data points located close together are joined into one
point. The number of theseso-calledreducad points is one order of magnitude
smaller than the original one.

Second,a simple length comparisonis usedas a line detection algorithm.
Giventhat the counterclockwise ordered data of the laserrange nder (points
ag;ay;::: ;anzbare located on a line, the algorithm has to ched for aj+; if
kai;aj+1 k = ‘t:i ka;;a+1 k < (j) in order to determine if a+1 is on line
with & . (Figure 2, left)

The third stepis surfacedetection. Scanninga plane surface,line detection
returns a sequenceof lines in successie scanned2D planesapproximating the
shape of surfaces.Thus a plain surfaceconsistsof a set of lines. Surfacesare
detected by merging similar oriented and nearby lines. (Figure 2, middle)

The fourth and nal step computesoccupiedspace.For this purpose,con-
glomerations of surfacesand polygons are merged sequettially into objects.
Two stepsarenecessaryto nd bounding boxesaround objects. First a bound-
ing box is placedaround ead large surface.In the secondstep objects closeto
ead other are mergedtogether, e.g., one should mergeobjects closerthan the
sizeof the robot, sincethe robot cannot passbetweensud objects (Figure 2,
right). Thesebounding boxes are usedfor avoiding obstacles.

Data reduction, line, surface and object detection are real-time capable
and run in parallel to the 3D scanning process.

Fig. 2. Left: Line detection in every scanslice. Middle: Surface segmertation. Right:
Bounding boxes of objects superimposing the surfaces



6 Sandor P. Fekete et al.
2.4 3D Scan Matc hing

To create a correct and consistert represenation of the ervironment, the

acquired 3D scanshave to be mergedin one coordinate system. This process
is called registration. Due to the robot's sensorsthe self-localization is usually
erroneousand imprecise, so the geometric structure of overlapping 3D scans
hasto be consideredfor registration. The odometry-basedrobot poseservesas
a rst estimate and is corrected and updated by the registration process.We
usethe well-known Iterativ e ClosestPoints (ICP) algorithm [2]to computethe

transformation, consisting of a rotation R 2 2 2 and a translation t 2 3.

The ICP algorithm computesthis transformation in an iterativ e fashion. In

ead iteration the algorithm selectsthe closestpoints as correspondencesand
computesthe transformation (R;t) for minimizing

Xm W ) =
E(R;t)= wii jjmi  (Rdj + t)jj;
i=1 j=1

where N, and Ny are the number of points in the model set M, i.e., rst

3D scan,or data setD, second3D scan,respectively, and w;; are the weights
for a point match. The weights are assignedas follows: w;; = 1, if m; is
the closestpoint to d; within a closelimit, w;; = 0 otherwise. It is shown
in [2] that the iteration terminates in a minimum. The assumptionis that in
the last iteration the point correspondencesare correct. In ead iteration the
transformation is computed in a fast closed-formmanner by the quaternion-
basedmethod of Horn [8]. In addition, point reduction and kD.trees speedup
the computation of the point pairs, such that only the time required for scan
matching is reducedto roughly one second[17]. Figure 3 shawsthree iteration
stepsfor 3D scanalignmert.

Fig. 3. Three iteration steps of scan alignment processfor the two 3D scanspre-
serted in Figure 1 (bottom, middle, right).



Online Searding with an Autonomous Robot 7
2.5 3D Object Detection

Automatic, fast and reliable object detection al-

gorithms are essetial for mobile robots used in

seardiing tasks. To perceivwe objects, we use the

3D laserrange and re ectance data. The 3D data

is transformed into imagesby o -screen rendering.

To detect objects, a cascadeof classiers, i.e., a

linear decisiontree, is used. Following the ideas of

Viola and Jones, we compose ead classi er from

several simple classi ers, which in turn cortain an Fig. 4: Object detection in
edge, line or certer surround feature [20]. There '@N9€IMages.

exists an e ective method for the fast computation of these features using
an intermediate represenation, namely, integral image. For learning of the
object classes,a boosting technique, namely, Ada Boost, is used [20]. The
resulting approach for object classi cation is reliable and real-time capable
and combinesrecen resultsin computer vision with the emergingtechnology
of 3D laser scanners.For a detailed discussionof object detection in 3D laser
range data, refer to [14]. Figure 4 shavs an o ce chair detected by a cascade
of classi ers.

3 Algorithmic  Approac h

Now we turn to algorithmic aspects of the online problem faced by the robot
who is trying to look around a corner in the presenceof scancost: Given an
initial position at a known distance from a corner or door, and an object that
is hidden at an unknown angle behind this obstruction, how should one move
in order to seethe object as fast as possible?The total time incurred arises
from travel at a known maximum velocity, and the total time for stopping,
scanning, processing,and re-starting the robot.

When trying to dewvelop a good seardt strategy, we have to balancetheo-
retical quality with practical applicability. More precisely we have to keepa
closeeye on the trade-o betweentheseobjectives: An increasein theoretical
quality may come at the expenseof higher mathematical di cult y, possibly
requiring more complicated tools. In an online context, the use of suc tools
may causeboth theoretical and practical di culties: Complicated solutions
may causecomputational overheadthat canchangethe solution itself by caus-
ing extra delay; on the practical side, actually applying such a solution may
be dicult (due to limited accuracy of the robot's motion) and without sig-
ni cant use.To put relevant error boundsinto perspective: The largest room
available to usis the great hall of SchlossBirlingho ven; even there, the size of
Kurt and the object is still in the order of 2% of the room diameter.

On the mathematical side, it should be noted that evenin the theoretical
paper [7], semi-circlesare consideredinstead of the solution to the di eren tial
equation, in order to allow analysis of the resulting trajectories.
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In the following, we will start by giving somebasic mathematical obsena-
tions and properties (Section 3.1); this is followed by a discussionof globally
optimal strategies (Section 3.2). Section 3.3 describesa natural heuristic so-
lution that is both easyto describe and fast to evaluate; we give a number of
computational and empirical results that suggestour heuristic is within 2% of
an optimal strategy. Finally, Section 3.4 provides a number of mathematical
results, shawing that our fast and easyheuristic is asymptotically optimal.

3.1 Basic Observ ations

First, we intro duce somenotation that will be usedthroughout this section.
Let us assumethat the corner that hidesthe object is at distance d from
the start. Let x; denote the distance the robot travelsin the i th step, i.e.,
on its way from position i 1 to position i, from which the i th scanwill be
taken. If the object was hidden in nitesimally behind position i, the optimal
solution would go perpendicularly to the line L; that runs from the corner
through position i, and then take one scan from there. Let d; denote the
length of this line segmem and obsenethat it meetsL; at a point that lieson
the semi-circle spannedby the start and the corner. Then the optimum cost
to detect the object would be 1 + d;, whereasthe robot would only seethe
object at position i + 1, having accurrulated a cost of
il
i+ 1+ X;j
j=1

Now supposethat c is the smallest competitiv e ratio that can be achieved in
this setting. By local optimalit y, for any scanposition, the ratio of the solution
achieved and the optimal solution must be equal to c¢. Therefore,

Xi
Xisp = 1+ di) (i+1) X; 1)
j=1
must hold for i = 1;2;::: In particular, we have x; = ¢ 1 for the rst step.
3.2 Globally Optimal Strategies

The above recursion can be usedfor proving a lower bound.

Theorem 1. There is no glokal c-competitive strategy with c< 2.

Proof. Assumethe claim wasfalse,and there wasa c-competitiv e strategy for
c= 2 . We show that x; (1 )" holds, making it impossible for the
robot to getfurther than adistanceof 1= away from the start, a contradiction.
Clearly, we have x; = 1 for step 1. Moreover,

di Xj
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holds, becaused; is the shortest path from the start to line L;, whereasthe
sum denotesthe length of the robot's path. Plugging this into our recursion
yields
Xi
Xi+«1 (@ )@+ Xj)
j=1

By induction, we havex; (1 ), hence

X (1 )1 a i+t i a )1 @a @a+i))

=1 (@+i) @ ),

using the Bernoulli inequality 1 (1 + i) 1 )™ twice.

Instead of increasingthe distance d we could as well considera situation
where start and corner are a distance 1 apart, but the scancostis only 1=d.
Now Theorem 1 shows a remarkable discortinuity: Even for a scan cost ar-
bitrarily small, a lower bound of 2 cannot be beaten, whereasfor zero scan
cost, a factor of 1:212::: can be obtained [9].

On the positive side, for n intermediate scanpoints, Equation (1) provides
n optimalit y conditions. As there are 2n degreef freedom(the coordinates of
intermediate scanpoints), we get an underdetermined nonlinear optimization
problem for any given distance d, provided that we know the number of scan
points. For d = 1, this can be usedto derive an optimal competitiv e factor
of 1.808201...,achieved with one intermediate scan point. For larger d (and
hence,larger n) one could derive additional geometric optimality conditions
and usethem in combination with more complexnumerical methods. However,
this approad appears impractical for real applications, for reasonsstated
above. As we will seein the following, there is a better approad.

3.3 A Simple Heuristic Strategy

Now we describe a simple strategy for the searding problem that usestrajec-
tories inscribed into a circle. This reducesthe degreesof freedomto the point
where evaluation is fast and easy What is more, it works very well in realistic
settings, and it is asymptotically optimal for decreasingcost of scanning, or
growing size of the ervironment.

The robot simply follows a polygonal path inscribed into the semi-circle
of diameter d, spannedby start and corner. It remains to determine those
points where it stops for scanningits ervironment. This is done by applying
the optimality condition derived in Section 3.1. In step j, the robot moves
along a chord of length x;. From the corner, this chord is visible under an
angleof ' ; = arcsin(x; =d). The chord connectingthe start to position i is of
length

X
d=dsin( ')
j=1
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sothat the recursion (1) obtained in Section 3.1 turns into
0 0 11

X .
Xis1 = @1+ d sin@  arcsin %’ AA  (i+1) Xj :
j=1 j=1

Givenany ¢ > 1, we cantentativ ely compute stepsof length x; by this formula,
starting with x; = ¢ 1. If the resulting sequenceeacdesthe corner, the ratio
of c canindeedbe achieved. If it collapsesprematurely (by returning negative
values) c was too small. (For example, c = 2:001525:: is optimal for d = 40;
seeFigure 3.3 for an illustration of upper and lower bounds on this value.)

Fig. 5. An example for d = 40, with starting point on the right, corner on the left
of the semi-circles: (Left) For ¢ = 2:0016, the circle sequencereaches the corner,
showing that the chosen c can be achieved. (Right) For ¢ = 2:0015, the sequence
collapseshbefore reaching the corner, shawing that the chosenc cannot be achieved.
The actual optimum is about 2.001525...

By performing a binary seard, the optimal ratio and the necessarystep
lengths can be computed extremely fast. Moreover, an analysis of the optimal
ratio asa function of d shows that a maximum is reached for d = 4:400875::
which is precisely at the threshold between three and four necessaryscans,
with a competitiv e ratio of 2.168544.(See Table 1 for an overview of the
critical valuesfor which the number of scansincreases,and Figure 7 for the
achievable ratios as a function of the distance.) This is still within about 2%
of the global optimum, which appearsto be at about 2.12 (see Figure 6.)
Moreover, numerical evidenceshows that the ratio approaches?2 quite rapidly
asd tendsto in nit y. This is all the more surprising, asthe resulting initial step
length convergesto 1, while a constart step length of 1 yields a competitiv e
ratio of . In the following Section 3.4 we give a mathematical proof of this
obsenation.

3.4 Asymptotics

As we have seenin Theorem 1, there is a lower bound of 2 on the competi-
tive ratio for all strategiesand large d. In the following we will show that for
large d, there is a matching upper bound on our circle strategy presered in
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Number Maximal cat

of scans d upper bound
0 0.618034 1.618034
1 1.530414 2.040287
2 2.799395 2.155363
3 4.400876 2.168544
4 6.316892 2.147994
5 8.514200 2.118498

Table 1. Threshold valuesfor small numbers of scans,rounded to six digits.

|IABI=4.4

Fig. 6. A solution for d = 4:4 that achieves competitiv e ratio 2.12: The starting
position is at A, the corner at B.

2.15 215
2.10 2.10
2.05
2.05
10 20 30 40
2 4 6 8 10 1.95
1.95 1.90
1.90 1.85

Fig. 7. The competitiv e ratio asa function of d: (Left) for small valuesof d. (Right)
for larger valuesof d. Note the cuspsat threshold values,the sharp peakat (4.4,2.17),
and the clear asymptotic behavior. The rst step length, x1, is givenby ¢ 1.

Section 3.3, proving it to be asymptotically optimal. For limited physical dis-
tances,it showsthat evenfor arbitrarily small scantimes, there is a relatively
simple strategy that achievesthe optimal ratio of 2.

Our proof of the upper bound proceedsas follows. Let us assumethat we
are given some xed " > 0. We then proceedto show that for c = 2+ ",
the recursion preseried in Section 3.3 does not collapse before the corner is
reached, if the diameter d of the semi-circleis large enough.

In proving the lower bound stated in Theorem 1, we have usedthe obvious
fact that the length d, of the optimal path cannot exceedthe length of the
robot's path. Now we are turning this argumernt around: The robot's path
to position n doesnot exceedthe length of the circular arc leading from the
start to position n. As this arc is not much longer than d,, the length of the
chord from the start to n, if the diameter d of the circle is large enough.More
precisely we usethe following.
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Lemma 1. (i) Thereis an upper bound on the total length of the rst n steps
of the circle strategy that does only degend on n and ", but not on d.
(i) Givenany A > 0, we can nd do suchthat each arc of length A in a
circle of diameter  dy exaeeds the length of its chord by at most "2.

Proof. Claim (i) can be shown by the sametechnique asin the proof of The-
orem 1. In order to prove claim (ii), let a and c denote the maximum lengths
of an arc and its chord in a circle of diameter d satisfyinga b+ "2. Let
2 denote the angle of the arc, as seenfrom the certer, sothat a = d
and ¢ = dsin hold. The maximum arc satisfying the condition is of length
a= d 4 where 4 is the solution of the equation ¢ sin 4 = "2=d. In the
equivalent expression
dg 1 sin g _ .2
d

the fraction tendsto one,soa= d 4 must be unbounded. ut
Thesefacts will now be usedin providing a lower bound for the rst steps
along the semi-circle,aiming for a competitiv e ratio ofc= 2+ ",

Lemma 2. Let" > 0 and N be given. Then there is a number dy such that
for each diameterd do wehavex, 1+ (2" 1)",forn N.

Proof. Using Lemma 1 we can choosed, large enoughthat

X
Xi d, + "2
i=1
holdsforalln N if d dy. Now we proceedby induction. For x; := (1+ ")
the claim is ful lled. For n = 2 we obsenethat d; = x; holds, sothe recursive
formula (1) yields

X2 = (2+")(A+di) 2 x4
=(2+"% 3 " 1+3"

Now assumethe claim was true for xq1;:::;Xn 1, wheren 3, and let d, 1
bethe (n 1)st chord, arising by connectingthe start point with the (n 1)st
scanpoint. The induction hypothesisimplies

X X _ _
Xi 1+ 2 1" =j+ @71 j 2m
i=1 i=1

From the recursion we obtain
Xn=2+")1+dy 1) n Xj

P
Asd do, wehaved, 1 "'xi "2forn N.Asn 3, weget



Online Searding with an Autonomous Robot 13
x 1 ! ! x 1 !
Xn (2+") 1+ Xi "2 n X
i=1 i=1
X1
@+ Xi +@+"@Q "?) n
i=1
1+ 1"+ n 3 ")
1+2" "

Under the assumptionsof Lemma 2 we can now prove the following.

P
Lemma 3. For the rst N stepsof the robot, & iNzolxi 5 holds.
Proof. We may assumethat
Xp 1+ (2" 1)"

holdsforn N. If N islarge enoughandn N=2, we get

1
Xn 1+ —0 1" 10
Thus,
K 1 X 1
Xi Xi 5N;
i=1 i=N=2

asclaimed. u

To concludethe proof, we considera diameter d large enoughfor Lemma 3
to hold, sowe have a lower bound of 5 on the averagesizefor the rst N steps.
This su ces to shaw that all following stepsare at least of length 5.

P
Lemma 4. Assumethat for someN 12, we have iNzl 'x;  BN. Then

Xn bHforalln N.

Proof. Again we proceedby induction and consider
X 1 !
Xp= (2+")(1+dy 1) n Xi

i=1

As all x; are lengths of chords of the semi-circlewith diameter d, we have
2 X1
dn 1 — Xj:

i=1

By a similar argumert as before, we get
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I !
5 X1 K 1
Xn (2+") 1+ — Xi n Xi

sincen 12, asclaimed. u

With the help of theselemmas, we get

Theorem 2. The circle strategy is asymptotically optimal: For any " > 0,
there is a d-, suchthat for all d d-, the strategy is (2 + ")-competitive.

Proof. The precedingLemmas 2, 3, 4 shaw that for any large enoughd, the
sequencewill consist of step lengths that are all at least 5. This implies that
the sequencewill reach the cornerin a nite number of steps,shawing that a
competitiv e factor of (2+ ") can bereached. ti

4 Practical Application

Our strategy was usedin a practical setting, documerted in the video [6]. In
the great hall of Schloss Birlinghoven, starting about 8 meters from a door
(d = 1 for the right scannersetting), Kurt follows the trajectory developedin
the third part; depending on the position of a hidden object (a chair) he may
have to perform a secondscanfrom the corner. The secondscenarioshows a
starting distance of d = 2, resulting in two intermediate scan points.

5 Conclusions

We have deweloped a seard strategy that can be used for an actual au-
tonomous robot. Obviously, a number of problems remain. Just like [9] pro-
vided a crucial step towards the solution for exploring generalsimple polygons
described in [7], one of the most interesting challengesis to extend our results
to more generalsettings with a larger number of obstacles,or the exploration
of a complete region. SeeFigure 8 for a typical realistic scenario. It should
be noted that scan cost (and hence positive step length without vision) can
causetheoretical problemsin the presenceof tiny bottlenecks; even without
scan cost, this is the basis of the classof examplesin [1] for polygons with
holes. Howewer, in a practical setting, lower bounds on the feature size are
given by robot sizeand scannerresolution. Thus, there may be somehope.
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Fig. 8. A typical scenario faced by Kurt3D. Top left: Extracted points at height
75 cm (corresponding to gure 1, bottom middle). Top right: Line detection using
Hough transform. Bottom: Automatically generated map with occlusion lines [17].
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