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Summary . We discussonline strategies for visibilit y-based searching for an object
hidden behind a corner, using Kurt3D, a real autonomous mobile robot. This task
is closely related to a number of well-studied problems. Our robot uses a three-
dimensional laser scanner in a stop, scan, plan, go fashion for building a virtual
three-dimensional environment. Besides planning tra jectories and avoiding obsta-
cles, Kurt3D is capable of identifying objects lik e a chair. We derive a practically
useful and asymptotically optimal strategy that guaranteesa competitiv e ratio of 2,
which di�ers remarkably from the well-studied scenariowithout the needof stopping
for surveying the environment. Our strategy is used by Kurt3D, documented in a
separate video.
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1 In tro duction

Visibilit y Problems. Visibilit y-based problems of surveying, guarding, or
searching have a long-standing tradition in the area of computational opti-
mization; they may very well be considereda �eld of their own. Using station-
ary positions for guarding a region is the well-known art gallery problem[15].
The watchmanproblem[3,18,19] asksfor a short tour along which onemobile
guard can seethe entire region. If the region is unknown in advance, we are
faced with the online watchman problem. For a simple polygon, Ho�mann et
al. [7] achieve a constant competitiv e ratio of 26.5,while Alb erset al. [1] show
that no constant competitiv e factor exists for a region with holes, and un-
boundedaspect ratio. Kalyanasundaramand Pruhs [12] considerthe problem
in graphs and give a competitiv e factor of 16.
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In the context of geometricsearching, a crucial issueis the questionof how
to look around a corner: Given a starting position, and a known distance to
a corner, how should one move in order to seea hidden object (or the other
part of the wall) as quickly as possible?This problem was solved by Icking
et al. [9, 10] who show that an optimal strategy can be characterized by a
di�eren tial equation that yields a competitiv e factor of 1.2121.. . , which is
optimal. Note that actually using this solution requiresnumerical evaluation.

An Autonomous Mobile Rob ot. From the practical side, our work
is motivated by an actual application in robotics: The Fraunhofer Institute
for Autonomous Intelligent Systems(AIS) has developed autonomousmobile
robots that can survey their environment by virtue of a high-resolution, 3D
laserscanner[17]. By merging several 3D scansacquired in a stop, scan,plan,
go fashion, the robot Kurt3D builds a virtual 3D environment that allows it
to navigate, avoid obstacles,and detect objects [14]. This makesthe visibilit y
problems described above quite practical, as actually using good tra jectories
is now possibleand desirable.

However, while human mobile guards are generally assumedto have full
vision at all times, our autonomous robot has to stop and take some time
for taking a survey of its environment. This makes the objective function
(minimize total time to locate an object or explore a region) a sum of travel
time and scantime; a somewhatrelated problem is searching for an object on
a line in the presenceof turn cost [5], which turns out to be a generalizationof
the classicallinear search problem. Somewhatsurprisingly, scancost (however
small it may be) causesa crucial di�erence to the well-studied casewithout
scancost, even in the limit of in�nitesimally small scantimes.

Independent from our work, the problem of looking around a corner in
the presenceof scancost has beenstudied by Isler et al. [11], who described
two deterministic strategiesachieving competitiv e ratios of 3.14and 2.22,and
also considereda probabilistic framework dealing with prior knowledgeabout
the possiblevalues of corners. We improve on these results with a di�eren t,
asymptotically optimal strategy, and prove a matching lower bound.

Other Related W ork. Visbilit y-based navigation of robots involves a
variety of di�eren t aspects. For example,Efrat et al. [4] study the task of de-
veloping strategiesfor tracking and capturing a visible target with known tra-
jectory, while maintaining line-of-sight among obstacles.Kutulak os et al. [13]
consider the task of vision-guided exploration, where the robot is assumedto
move about freely in three dimensions,among various obstacles.

Our Results. The main objective of this paper is to demonstrate that
technology has reached the stage of actually applying previous theoretical
studies, at the sametime triggering new algorithmic research. We hope that
this will highlight the need for and the opportunities of closer interaction
betweentheoreticiansand practitioners. In particular, wedescribethe problem
of online searching by a real autonomousrobot, for an object (a chair) hidden
behind a corner, which is at distanced from the robot's starting position. Our
mathematical results are as follows:
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� We show that for an initial distance of at least d � 1=� from the corner, a
competitiv e ratio of 2 � � cannot be achieved. This implies a lower bound
of 2 on the competitiv e ratio by any onestrategy, and provesthat there is
an important distinction from the casewithout scancost.

� We describe a heuristic strategy that is fast to evaluate and easy to im-
plement in real life.

� We show that this strategy is asymptotically optimal by proving that for
large distances,the competitiv e ratio convergesto 2.

� We give additional numerical evidenceshowing that the performance of
our strategy is within about 2% of the optimum.

� Most importantly , we describe how our strategy can actually be used by
Kurt3D, a real mobile autonomousrobot.

Further documentation of our work is provided by a video [6] that is also
available at the authors' web addresses.

The rest of this paper is organized as follows. In Section 2, we describe
the technical details, properties, and capabilities of Kurt3D, an autonomous
mobile robot that wasusedin our experiments. Section3 providesmathemat-
ical results on the problem arising from Kurt searching for a hidden object.
Section4 givesa description of how our results are usedin practice. The �nal
Section 5 provides somedirections for future research.

2 The Autonomous Mobile Rob ot

In this sectionwedescribe technical details and background of the autonomous
mobile robot Kurt3D.

2.1 The Kurt3D Rob ot Platform

Kurt3D (Figure 1, top left) is a mobile robot platform with a size of 45 cm
(length) � 33 cm (width) � 26 cm (height) and a weight of 15.6kg. Equipped
with the 3D laser range �nder the height increasesto 47 cm and the weight
to 22.6kg.4 Kurt3D's maximum velocity is 5.2 m/s (autonomously controlled
4.0 m/s). Two 90 W motors are used to power the 6 wheels,where the front
and rear wheelshave no tread pattern to enhancerotating. Kurt3D operates
for about 4 hours with one battery (28 NiMH cells, capacity: 4500 mAh)
charge. The core of the robot is a Pentium-I I I-600 MHz with 384 MB RAM.
An embedded16-Bit CMOS microcontroller is usedto control the motor.

2.2 The AIS 3D Laser Range Finder

The AIS 3D laserrange�nder (Figure 1, top right) [16,17] is built on the basis
of a 2D range �nder by extension with a mount and a standard servo motor.

4Videos of the exploration with the autonomous mobile robot can be found at
http://www.ais.fhg.de/ARC/kur t3D/ index .htm l
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The 2D laser range �nder is attached in the center of rotation to the mount
for achieving a controlled pitch motion. The servo is connected on the left
side (Figure 1, top middle). The 3D laserscanneroperatesup to 5h (Scanner:
17 W, 20 NiMH cellswith a capacity of 4500mAh, Servo: 0.85W, 4.5 V with
batteries of 4500mAh) on one battery pack.

Fig. 1. Top left: The autonomous mobile robot Kurt3D equipped with the 3D
scanner. Top right: The AIS 3D laser range �nder. Its technical basis is a SICK 2D
laser range �nder (LMS-200). Bottom row, left: A scanned sceneas depth image.
Middle and right: Scannedscenesas point cloud viewed with a camera orientation
towards the door.

The area of 180� (h) � 120� (v) is scannedwith di�eren t horizontal (181,
361, 721 pts.) and vertical (210, 420 pts.) resolutions. A plane with 181 data
points is scanned in 13 ms by the 2D laser range �nder (rotating mirror
device). Planes with more data points, e.g., 361, 721, double or quadruple
this time. Thus, a scan with 181 � 210 data points needs2.8 seconds.In
addition to the distance measurement, the 3D laser range �nder is capable
of quantifying the amount of light returning to the scanner, i.e., re
ectance
data [14].Figure 1 (bottom left) showsa scannedsceneasdepth image,created
by o�-screen rendering from the 3D data points (Figure 1, bottom middle) by
an OpenGL-baseddrawing module.
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2.3 Basic 3D Scanner Soft ware

The basisof the scanmatching algorithms and the reliable robot control are
algorithms for reducing points, line detection, surfaceextraction and object
segmentation. Next we give a brief description of these algorithms. Details
can be found in [16].

The scanneremits the laser beamsspherically from one center, such that
the data points closeto the sourceare more dense.The �rst step is to reduce
the data. Therefore, data points located close together are joined into one
point. The number of theseso-calledreduced points is oneorder of magnitude
smaller than the original one.

Second,a simple length comparison is usedas a line detection algorithm.
Given that the counterclockwiseordereddata of the laser range�nder (points
a0; a1; : : : ; an ) are located on a line, the algorithm has to check for aj +1 if
kai ; aj +1 k =

P j
t = i kat ; at +1 k < � (j ) in order to determine if aj +1 is on line

with aj . (Figure 2, left)
The third step is surfacedetection. Scanninga plane surface,line detection

returns a sequenceof lines in successive scanned2D planesapproximating the
shape of surfaces.Thus a plain surfaceconsistsof a set of lines. Surfacesare
detected by merging similar oriented and nearby lines. (Figure 2, middle)

The fourth and �nal step computesoccupiedspace.For this purpose,con-
glomerations of surfacesand polygons are merged sequentially into objects.
Two stepsarenecessaryto �nd bounding boxesaround objects. First a bound-
ing box is placedaround each large surface.In the secondstep objects closeto
each other are mergedtogether, e.g.,oneshould mergeobjects closerthan the
sizeof the robot, sincethe robot cannot passbetweensuch objects (Figure 2,
right). Thesebounding boxes are usedfor avoiding obstacles.

Data reduction, line, surface and object detection are real-time capable
and run in parallel to the 3D scanningprocess.

Fig. 2. Left: Line detection in every scanslice. Middle: Surfacesegmentation. Right:
Bounding boxes of objects superimposing the surfaces



6 S�andor P. Fekete et al.

2.4 3D Scan Matc hing

To create a correct and consistent representation of the environment, the
acquired 3D scanshave to be mergedin one coordinate system. This process
is called registration. Due to the robot's sensors,the self-localization is usually
erroneousand imprecise, so the geometric structure of overlapping 3D scans
hasto be consideredfor registration. The odometry-basedrobot poseservesas
a �rst estimate and is corrected and updated by the registration process.We
usethe well-known Iterativ eClosestPoints (ICP) algorithm [2] to computethe
transformation, consisting of a rotation R 2

� 3� 3 and a translation t 2
� 3.

The ICP algorithm computes this transformation in an iterativ e fashion. In
each iteration the algorithm selectsthe closestpoints as correspondencesand
computesthe transformation (R ; t ) for minimizing

E(R ; t ) =
N mX

i =1

N dX

j =1

wi;j jjm i � (Rd j + t )jj2 ;

where Nm and Nd are the number of points in the model set M , i.e., �rst
3D scan,or data set D , second3D scan,respectively, and wj i are the weights
for a point match. The weights are assignedas follows: wj i = 1, if m i is
the closest point to d j within a close limit, wj i = 0 otherwise. It is shown
in [2] that the iteration terminates in a minimum. The assumption is that in
the last iteration the point correspondencesare correct. In each iteration the
transformation is computed in a fast closed-formmanner by the quaternion-
basedmethod of Horn [8]. In addition, point reduction and kD.trees speedup
the computation of the point pairs, such that only the time required for scan
matching is reducedto roughly onesecond[17]. Figure 3 shows three iteration
steps for 3D scanalignment.

Fig. 3. Three iteration steps of scan alignment processfor the two 3D scanspre-
sented in Figure 1 (bottom, middle, right).
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2.5 3D Ob ject Detection

Automatic, fast and reliable object detection al-
gorithms are essential for mobile robots used in
searching tasks. To perceive objects, we use the
3D laser range and re
ectance data. The 3D data
is transformed into imagesby o�-screen rendering.
To detect objects, a cascadeof classi�ers, i.e., a
linear decisiontree, is used.Following the ideasof
Viola and Jones,we composeeach classi�er from
several simple classi�ers, which in turn contain an
edge, line or center surround feature [20]. There

Fig. 4: Object detection in
range images.

exists an e�ectiv e method for the fast computation of these features using
an intermediate representation, namely, integral image. For learning of the
object classes,a boosting technique, namely, Ada Boost, is used [20]. The
resulting approach for object classi�cation is reliable and real-time capable
and combines recent results in computer vision with the emergingtechnology
of 3D laser scanners.For a detailed discussionof object detection in 3D laser
range data, refer to [14]. Figure 4 shows an o�ce chair detected by a cascade
of classi�ers.

3 Algorithmic Approac h

Now we turn to algorithmic aspects of the online problem facedby the robot
who is trying to look around a corner in the presenceof scancost: Given an
initial position at a known distance from a corner or door, and an object that
is hidden at an unknown anglebehind this obstruction, how should onemove
in order to seethe object as fast as possible?The total time incurred arises
from travel at a known maximum velocity, and the total time for stopping,
scanning,processing,and re-starting the robot.

When trying to develop a good search strategy, we have to balancetheo-
retical quality with practical applicabilit y. More precisely, we have to keepa
closeeye on the trade-o� betweentheseobjectives:An increasein theoretical
quality may come at the expenseof higher mathematical di�cult y, possibly
requiring more complicated tools. In an online context, the useof such tools
may causeboth theoretical and practical di�culties: Complicated solutions
may causecomputational overheadthat can changethe solution itself by caus-
ing extra delay; on the practical side, actually applying such a solution may
be di�cult (due to limited accuracy of the robot's motion) and without sig-
ni�can t use.To put relevant error bounds into perspective: The largest room
available to us is the great hall of SchlossBirlingho ven; even there, the sizeof
Kurt and the object is still in the order of 2% of the room diameter.

On the mathematical side, it should be noted that even in the theoretical
paper [7], semi-circlesare consideredinstead of the solution to the di�eren tial
equation, in order to allow analysis of the resulting tra jectories.
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In the following, we will start by giving somebasicmathematical observa-
tions and properties (Section 3.1); this is followed by a discussionof globally
optimal strategies(Section 3.2). Section 3.3 describesa natural heuristic so-
lution that is both easyto describe and fast to evaluate; we give a number of
computational and empirical results that suggestour heuristic is within 2% of
an optimal strategy. Finally, Section 3.4 provides a number of mathematical
results, showing that our fast and easyheuristic is asymptotically optimal.

3.1 Basic Observ ations

First, we intro duce somenotation that will be usedthroughout this section.
Let us assumethat the corner that hides the object is at distance d from

the start. Let x i denote the distance the robot travels in the i � th step, i.e.,
on its way from position i � 1 to position i , from which the i � th scanwill be
taken. If the object was hidden in�nitesimally behind position i , the optimal
solution would go perpendicularly to the line L i that runs from the corner
through position i , and then take one scan from there. Let di denote the
length of this line segment and observe that it meetsL i at a point that lies on
the semi-circlespannedby the start and the corner. Then the optimum cost
to detect the object would be 1 + di , whereasthe robot would only seethe
object at position i + 1, having accumulated a cost of

i + 1 +
i +1X

j =1

x j :

Now supposethat c is the smallest competitiv e ratio that can be achieved in
this setting. By local optimalit y, for any scanposition, the ratio of the solution
achieved and the optimal solution must be equal to c. Therefore,

x i +1 = c(1 + di ) � (i + 1) �
iX

j =1

x j (1)

must hold for i = 1; 2; : : : In particular, we have x1 = c � 1 for the �rst step.

3.2 Globally Optimal Strategies

The above recursion can be usedfor proving a lower bound.

Theorem 1. There is no global c-competitive strategy with c < 2.

Proof. Assumethe claim wasfalse,and there wasa c-competitiv e strategy for
c = 2 � � . We show that x i � (1 � � ) i holds, making it impossible for the
robot to get further than a distanceof 1=� away from the start, a contradiction.
Clearly, we have x1 = 1 � � for step 1. Moreover,

di �
iX

j =1

x j
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holds, becausedi is the shortest path from the start to line L i , whereasthe
sum denotesthe length of the robot's path. Plugging this into our recursion
yields

x i +1 � (1 � � )(1 +
iX

j =1

x j ) � i:

By induction, we have x j � (1 � � ) j , hence

x i +1 � (1 � � )
1 � (1 � � ) i +1

�
� i � (1 � � )

1 � (1 � (1 + i )� )
�

� i

= 1 � (1 + i )� � (1 � � ) i +1 ;

using the Bernoulli inequality 1 � (1 + i )� � (1 � � ) i +1 twice. ut

Instead of increasing the distance d we could as well considera situation
where start and corner are a distance 1 apart, but the scancost is only 1=d.
Now Theorem 1 shows a remarkable discontinuit y: Even for a scan cost ar-
bitrarily small, a lower bound of 2 cannot be beaten, whereasfor zero scan
cost, a factor of 1:212: : : can be obtained [9].

On the positive side, for n intermediate scanpoints, Equation (1) provides
n optimalit y conditions. As there are2n degreesof freedom(the coordinatesof
intermediate scanpoints), we get an underdeterminednonlinear optimization
problem for any given distance d, provided that we know the number of scan
points. For d = 1, this can be used to derive an optimal competitiv e factor
of 1.808201...,achieved with one intermediate scan point. For larger d (and
hence,larger n) one could derive additional geometric optimalit y conditions
and usethem in combination with morecomplexnumerical methods.However,
this approach appears impractical for real applications, for reasonsstated
above. As we will seein the following, there is a better approach.

3.3 A Simple Heuristic Strategy

Now we describe a simple strategy for the searching problem that usestra jec-
tories inscribed into a circle. This reducesthe degreesof freedomto the point
whereevaluation is fast and easy. What is more, it works very well in realistic
settings, and it is asymptotically optimal for decreasingcost of scanning, or
growing sizeof the environment.

The robot simply follows a polygonal path inscribed into the semi-circle
of diameter d, spanned by start and corner. It remains to determine those
points where it stops for scanning its environment. This is done by applying
the optimalit y condition derived in Section 3.1. In step j , the robot moves
along a chord of length x j . From the corner, this chord is visible under an
angle of ' j = arcsin(x j =d). The chord connecting the start to position i is of
length

di = d sin(
iX

j =1

' j );
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so that the recursion (1) obtained in Section 3.1 turns into

x i +1 = c

0

@1 + d sin

0

@
iX

j =1

arcsin
� x j

d

�
1

A

1

A � (i + 1) �
iX

j =1

x j :

Givenany c > 1, wecantentativ ely computestepsof length x i by this formula,
starting with x1 = c� 1. If the resulting sequencereachesthe corner, the ratio
of c can indeedbe achieved. If it collapsesprematurely (by returning negative
values) c was too small. (For example, c = 2:001525::: is optimal for d = 40;
seeFigure 3.3 for an illustration of upper and lower bounds on this value.)

d=40
c=2.0016

d=40
c=2.0015

Fig. 5. An example for d = 40, with starting point on the right, corner on the left
of the semi-circles: (Left) For c = 2:0016, the circle sequencereaches the corner,
showing that the chosen c can be achieved. (Right) For c = 2:0015, the sequence
collapsesbefore reaching the corner, showing that the chosenc cannot be achieved.
The actual optim um is about 2.001525...

By performing a binary search, the optimal ratio and the necessarystep
lengths can be computed extremely fast. Moreover, an analysisof the optimal
ratio as a function of d shows that a maximum is reached for d = 4:400875:::
which is precisely at the threshold between three and four necessaryscans,
with a competitiv e ratio of 2.168544.(See Table 1 for an overview of the
critical values for which the number of scansincreases,and Figure 7 for the
achievable ratios as a function of the distance.) This is still within about 2%
of the global optimum, which appears to be at about 2.12 (see Figure 6.)
Moreover, numerical evidenceshows that the ratio approaches2 quite rapidly
asd tendsto in�nit y. This is all the moresurprising, asthe resulting initial step
length convergesto 1, while a constant step length of 1 yields a competitiv e
ratio of � . In the following Section 3.4 we give a mathematical proof of this
observation.

3.4 Asymptotics

As we have seenin Theorem 1, there is a lower bound of 2 on the competi-
tiv e ratio for all strategiesand large d. In the following we will show that for
large d, there is a matching upper bound on our circle strategy presented in
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Number Maximal c at
of scans d upper bound

0 0.618034 1.618034
1 1.530414 2.040287
2 2.799395 2.155363
3 4.400876 2.168544
4 6.316892 2.147994
5 8.514200 2.118498

Table 1. Threshold values for small numbers of scans,rounded to six digits.

|AB|=4.4

|AJ|=4.28

|GI|=1.33

J

I

|AC|=1.00

B

G

H
|AH|=3.34

|EG|=1.38 E

|AG|=3.41
|CE|=1.37

|AF|=2.24

F

D
C

|AC|=1.12

|AC|=1.12

A

Fig. 6. A solution for d = 4:4 that achieves competitiv e ratio 2.12: The starting
position is at A, the corner at B .

2 4 6 8 10

1.90

1.95
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2.10

2.15

10 20 30 40

1.85

1.90

1.95

2.05

2.10

2.15

Fig. 7. The competitiv e ratio as a function of d: (Left) for small valuesof d. (Right)
for larger valuesof d. Note the cuspsat threshold values,the sharp peak at (4.4,2.17),
and the clear asymptotic behavior. The �rst step length, x1 , is given by c � 1.

Section 3.3, proving it to be asymptotically optimal. For limited physical dis-
tances,it shows that even for arbitrarily small scantimes, there is a relatively
simple strategy that achievesthe optimal ratio of 2.

Our proof of the upper bound proceedsas follows. Let us assumethat we
are given some �xed " > 0. We then proceed to show that for c = 2 + " ,
the recursion presented in Section 3.3 does not collapsebefore the corner is
reached, if the diameter d of the semi-circle is large enough.

In proving the lower bound stated in Theorem 1, we have usedthe obvious
fact that the length dn of the optimal path cannot exceedthe length of the
robot's path. Now we are turning this argument around: The robot's path
to position n doesnot exceedthe length of the circular arc leading from the
start to position n. As this arc is not much longer than dn , the length of the
chord from the start to n, if the diameter d of the circle is large enough.More
precisely, we usethe following.
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Lemma 1. (i) There is an upper bound on the total length of the �rst n steps
of the circle strategy that does only depend on n and " , but not on d.
(ii) Given any A > 0, we can �nd d0 such that each arc of length � A in a
circle of diameter � d0 exceeds the length of its chord by at most " 2.

Proof. Claim (i) can be shown by the sametechnique as in the proof of The-
orem 1. In order to prove claim (ii), let a and c denote the maximum lengths
of an arc and its chord in a circle of diameter d satisfying a � b + " 2. Let
2� denote the angle of the arc, as seen from the center, so that a = d�
and c = dsin � hold. The maximum arc satisfying the condition is of length
a = d� d where � d is the solution of the equation � d � sin � d = "2=d. In the
equivalent expression

d� d

�
1 �

sin � d

� d

�
= "2

the fraction tends to one, so a = d� d must be unbounded. ut
Thesefacts will now be usedin providing a lower bound for the �rst steps

along the semi-circle,aiming for a competitiv e ratio of c = 2 + " .

Lemma 2. Let " > 0 and N be given. Then there is a number d0 such that
for each diameter d � d0 we havexn � 1 + (2n � 1) " , for n � N .

Proof. Using Lemma 1 we can choosed0 large enoughthat

nX

i =1

x i � dn + "2

holds for all n � N if d � d0. Now we proceedby induction. For x1 := (1 + ")
the claim is ful�lled. For n = 2 we observe that d1 = x1 holds, sothe recursive
formula (1) yields

x2 = (2 + ")(1 + d1) � 2 � x1

= (2 + ")2 � 3 � " � 1 + 3":

Now assumethe claim was true for x1; : : : ; xn � 1, where n � 3, and let dn � 1

be the (n � 1)st chord, arising by connectingthe start point with the (n � 1)st
scanpoint. The induction hypothesis implies

jX

i =1

x i �
jX

i =1

�
1 +

�
2i � 1

�
"
�

= j + (2j +1 � j � 2)":

From the recursion we obtain

xn = (2 + ")(1 + dn � 1) � n �

 
n � 1X

i =1

x i

!

:

As d � d0, we have dn � 1 �
� P n � 1

i =1 x i

�
� "2 for n � N . As n � 3, we get
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xn � (2 + ")

 

1 +

 
n � 1X

i =1

x i

!

� "2

!

� n �

 
n � 1X

i =1

x i

!

= (1 + ")

 
n � 1X

i =1

x i

!

+ (2 + ")(1 � " 2) � n

= 1 + (2n � 1)" + (2n � n � 3 � " ) " 2

� 1 + (2n � 1)": ut

Under the assumptionsof Lemma 2 we can now prove the following.

Lemma 3. For the �rst N stepsof the robot, 1
N

P N � 1
i =0 x i � 5 holds.

Proof. We may assumethat

xn � 1 + (2n � 1) "

holds for n � N . If N is large enoughand n � N=2, we get

xn � 1 +
�

10
"

� 1
�

" � 10:

Thus,
N � 1X

i =1

x i �
N � 1X

i = N =2

x i � 5N ;

as claimed. ut

To concludethe proof, we considera diameter d large enoughfor Lemma 3
to hold, sowe have a lower bound of 5 on the averagesizefor the �rst N steps.
This su�ces to show that all following stepsare at least of length 5.

Lemma 4. Assume that for some N � 12, we have
P N � 1

i =1 x i � 5N . Then
xn � 5 for all n � N .

Proof. Again we proceedby induction and consider

xn = (2 + ")(1 + dn � 1) � n �

 
n � 1X

i =1

x i

!

:

As all x i are lengths of chords of the semi-circlewith diameter d, we have

dn � 1 �
2
�

n � 1X

i =1

x i :

By a similar argument as before,we get
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xn � (2 + ")

 

1 +
2
�

 
n � 1X

i =1

x i

!!

� n �

 
n � 1X

i =1

x i

!

�
�

4
�

� 1
�  

n � 1X

i =1

x i

!

� n + 2

�
�

4
�

� 1
�

5n � n + 2 � 5;

sincen � 12, as claimed. ut

With the help of these lemmas,we get

Theorem 2. The circle strategy is asymptotically optimal: For any " > 0,
there is a d" , such that for all d � d" , the strategy is (2 + ")-competitive.

Proof. The preceding Lemmas 2, 3, 4 show that for any large enough d, the
sequencewill consist of step lengths that are all at least 5. This implies that
the sequencewill reach the corner in a �nite number of steps,showing that a
competitiv e factor of (2 + ") can be reached. ut

4 Practical Application

Our strategy was used in a practical setting, documented in the video [6]. In
the great hall of Schloss Birlingho ven, starting about 8 meters from a door
(d = 1 for the right scannersetting), Kurt follows the tra jectory developed in
the third part; depending on the position of a hidden object (a chair) he may
have to perform a secondscanfrom the corner. The secondscenarioshows a
starting distance of d = 2, resulting in two intermediate scanpoints.

5 Conclusions

We have developed a search strategy that can be used for an actual au-
tonomous robot. Obviously, a number of problems remain. Just like [9] pro-
vided a crucial step towards the solution for exploring generalsimple polygons
described in [7], oneof the most interesting challengesis to extend our results
to more generalsettings with a larger number of obstacles,or the exploration
of a complete region. SeeFigure 8 for a typical realistic scenario. It should
be noted that scan cost (and hencepositive step length without vision) can
causetheoretical problems in the presenceof tiny bottlenecks; even without
scan cost, this is the basis of the classof examplesin [1] for polygons with
holes. However, in a practical setting, lower bounds on the feature size are
given by robot sizeand scannerresolution. Thus, there may be somehope.
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Fig. 8. A typical scenario faced by Kurt3D. Top left: Extracted points at height
75 cm (corresponding to �gure 1, bottom middle). Top right: Line detection using
Hough transform. Bottom: Automatically generated map with occlusion lines [17].
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