

Goals of this Tutorial

We are aiming at enabling participants...

- To understand the basic principles of all aspects of 3D point cloud processing
- To understand the Simultaneous Localization and Mapping (SLAM) problem
- To enable your to talk to engineers / surveyors / CV-people / CS-people / ...
- To solve problems of modern sensor data processing
- To experience that real application scenarios are challenging
 - In terms of computational requirements
 - In terms of memory requirements
 - In terms of implementation issues

Spare Time Reading:

"Measuring the World" (Daniel Kehlmann)

 Carl Friedrich Gauß (1777–1855), mathematician, astronomer, geodesist and physicist Professor in Göttingen

Spare Time Reading:

"Measuring the World" (Daniel Kehlmann)

Carl Friedrich Gauß (1777–1855), mathematician, astronomer, geodesist and physicist Professor in Göttingen

Gauß as inventor

The heliotrop is an measurement device to measure angles to objects by using sun light reflections and the bisecting line of an angle.

- Invented around 1820 in Hamburg
- Highly accurate

Mapping the **Old** Problem

The Gaussian Point in Bremen City

Geodesy / Geodetics / Surveying

- Deals with the measurement and representation of the Earth.
- Devices: tape, theodolite, tachymeter (total station), leveling instrument, GPS, laser scanner

Modern Computer Vision

Microsoft Kinect

- Video 30 Hz
- RGB video: 8-bit VGA resolution (640 × 480 Pixel)
- Monochrome Video Stream (depth information): 11-bit VGA 2048 depth values
- Depth: 1,2 3,5 m, (enhanced: 0,7 6 m)
- FOV: 57° (h) × 43°(vert)
- Tilt unit 27°
- Cost effective

A Custom Made 3D Laser Scanner

3D laser scanner for mobile robots based on SICK LMS

- Based on a regular (e.g., SICK LMS-200) laser scanner
- Relatively cheap sensor
- Controlled pitch motion (120° v)
- Various resolutions and modi, e.g., reflectance measurement {181, 361, 721} [h] x {128, ..., 500} [v] points
- Fast measurement, e.g., 3.4 sec (181x256 points)

Mounted on mobile robots for 3D collision avoidance and building 3D maps.

(Video Crash)

(Video NoCrash)

3D Scanning Principles

Symbol Cont. rotating pivoting Mode Yaw Yaw-Top Roll Pitch

- + Complete 360° scans
- + Good point arrangements
- High point density at top
- + Fast scanning (half rot.)
- High point density at top
- Ground not measured
- + Fast scanning (half rot.)
- + High point density in front
- Unusual point arrangement
- High point density at the sides
- Small apex angle
- + Good point arrangements
- + Easy to build

 $http://www.rts.uni-hannover.de/index.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/\%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_Scannerkonfigurationen.php/%C3\%9Cbersicht_der_m\%C3\%B6glichen_MC3\%B$

Professional 3D Scanning

- Professional 3D scanners
 - Structured light (close range)

pulsed laser vs. time-of-flight (mid and long range)

3DTK – Hands-on-experience

- What you should learn now, using the show program
 - Most robotic data sets acquired by a rotating SICK scanner contain some outliers (it is worse with the kinect)
 - Data sets of professional scanners can be very large

- Things to try
 - Viewing a single small 3D scan acquired in Schloß Dagstuhl (this data set comes with the svn checkout)

```
bin/show -s 1 -e 1 dat
```

Viewing a high resolution outdoor 3D scan

```
bin/show -s 0 -e 0 -f riegl_txt --reflectance bremen_city
```


