The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single eye, complete with iris and pupil. Thus, the image is called "Self Portrait with Duckling".
The ICP Algorithm (1)

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set M (“model set”) and data set D

1. Select point correspondences $w_{i,j}$ in \{0,1\}
2. Minimize for rotation R, translation t

$$E(R, t) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \| m_i - (R d_j + t) \|^2$$

3. Iterate 1. and 2.

SVD-based calculation of rotation

- works in 3 translation plus 3 rotation dimensions
 ⇒ 6D SLAM with closed loop detection and global relaxation.
The ICP Algorithm (2)

Closed form (one-step) solution for minimizing of the error function

1. Cancel the double sum:

\[
E(R, t) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||m_i - (Rd_j + t)||^2
\]

\[
\propto \frac{1}{N} \sum_{i=1}^{N} ||m_i - (Rd_i + t)||^2,
\]

2. Compute centroids of the matching points

\[
c_m = \frac{1}{N} \sum_{i=1}^{N} m_i, \quad c_d = \frac{1}{N} \sum_{i=1}^{N} d_j
\]

\[
M' = \{m'_i = m_i - c_m\}_{1,\ldots,N}, \quad D' = \{d'_i = d_i - c_d\}_{1,\ldots,N}.
\]

3. Rewrite the error function

\[
E(R, t) = \frac{1}{N} \sum_{i=1}^{N} \left||m'_i - Rd'_i - \underbrace{(t - c_m + Rc_d)}_{=:\hat{t}}\right||^2
\]
3. Rewrite the error function

\[
E(R, t) = \frac{1}{N} \sum_{i=1}^{N} \| m'_i - Rd'_i - (t - c_m + Rc_d) \|^2
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} \| m'_i - Rd'_i \|^2 - \frac{2}{N} \tilde{t} \cdot \sum_{i=1}^{N} (m'_i - Rd'_i) + \frac{1}{N} \sum_{i=1}^{N} \| \tilde{t} \|^2.
\]

Minimize only the first term! (The second is zero and the third has a minimum for \(\tilde{t} = 0 \)).

\[
E(R, t) = \sum_{i=1}^{N} \| m'_i - Rd'_i \|^2.
\]

Arun, Huang und Blostein suggest a solution based on the singular value decomposition.

The ICP Algorithm (4)

Theorem: Given a 3 x 3 correlation matrix

\[
H = \sum_{i=1}^{N} m_i'^T d_i' = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}
\]

with \(S_{xx} = \sum_{i=1}^{N} m_{ix}' d_{ix}' \), \(S_{xy} = \sum_{i=1}^{N} m_{ix}' d_{iy}' \), \(\cdots \), then the optimal solution for \(E(R, t) = \sum_{i=1}^{N} \| m_i' - Rd_i' \| ^2 \) is \(R = VU^T \) with \(H = U\Lambda V^T \) from the SVD.

Proof:

\[
E(R, t) = \sum_{i=1}^{N} \| m_i' - Rd_i' \| ^2.
\]

Rewrite

\[
E(R, t) = \sum_{i=1}^{N} \| m_i' \| ^2 - 2 \sum_{i=1}^{N} m_i' \cdot Rd_i' + \sum_{i=1}^{N} \| d_i' \| ^2.
\]

Rotation is length preserving, i.e., maximize the term

\[
\sum_{i=1}^{N} m_i' \cdot Rd_i' = \sum_{i=1}^{N} m_i'^T Rd_i'
\]
The ICP Algorithm (5)

Theorem: Given a 3 x 3 correlation matrix

\[H = \sum_{i=1}^{N} m_i^T d_i' = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix} \]

with \(S_{xx} = \sum_{i=1}^{N} m_i' d_i' x, \ S_{xy} = \sum_{i=1}^{N} m_i' d_i' y, \ldots \), then the optimal solution for \(E(R, t) = \sum_{i=1}^{N} ||m_i' - Rd_i'||^2 \) is \(R = VU^T \) with \(H = U\Lambda V^T \) from the SVD.

Proof:

\[\sum_{i=1}^{N} m_i' \cdot Rd_i' = \sum_{i=1}^{N} m_i'^T Rd_i' \]

Rewrite using the trace of a matrix

\[\text{Trace} \left(\sum_{i=1}^{N} Rd_i' m_i'^T \right) = \text{Trace} \left(RH \right) \]

Lemma: For all positive definite matrices \(A A^T \) and all orthonormal matrices \(B \) the following equation holds:

\[\text{Trace} \left(A A^T \right) \geq \text{Trace} \left(B A A^T \right) \]

\(\square \)
The ICP Algorithm (6)

Theorem: Given a 3 x 3 correlation matrix

\[
H = \sum_{i=1}^{N} m_i'^T d_i' = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}
\]

with \(S_{xx} = \sum_{i=1}^{N} m_i' x_i' d_i' x_i' \), \(S_{xy} = \sum_{i=1}^{N} m_i' x_i' d_i' y_i' \), \ldots, then the optimal solution for \(E(R, t) = \sum_{i=1}^{N} \| m_i' - R d_i' \|^2 \) is \(R = VU^T \) with \(H = U\Lambda V^T \) from the SVD.

Proof: Suppose the singular value decomposition of \(H \) is \(H = U\Lambda V^T \). \(U \) and \(V \) are orthonormal 3 x 3 and \(\Lambda \) a diagonal matrix without negative entries.

\(R = VU^T \).

\(R \) is orthonormal and \(RH = VU^T U\Lambda V^T = V\Lambda V^T \).

And using the lemma it is \(\text{Trace} (RH) \geq \text{Trace} (BRH) \).
The ICP Algorithm (7)

- Estimating the transformation can be accomplished very fast $O(n)$

- Closest point search
 - Naïve $O(n^2)$, i.e., brute force
 - K-d trees for searching in logarithmic time

Recommendation: Start with
ANN: A Library for Approximate Nearest Neighbor Searching by David M. Mount and Sunil Arya (University of Maryland)
- Easy to use
- Many different methods are available
- Quite fast

http://www.cs.umd.edu/~mount/ANN/
One has to search all buckets according to the ball-within-bounds-test. ⇒ Backtracking
NNS Search – the Critical Issue

Properties for all tested NNS libraries.

<table>
<thead>
<tr>
<th>Library</th>
<th>revision</th>
<th>Data structure</th>
<th>k-NN search</th>
<th>fixed radius</th>
<th>ranged search</th>
<th>optimized for</th>
</tr>
</thead>
<tbody>
<tr>
<td>3DTK [2]</td>
<td>rev. 470</td>
<td>k-d tree</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>shape registration</td>
</tr>
<tr>
<td>3DTK</td>
<td>rev. 470</td>
<td>octree</td>
<td>×</td>
<td>×</td>
<td>✓</td>
<td>shape registration & efficient storage</td>
</tr>
<tr>
<td>ANN [3]</td>
<td>Ver. 1.1.1</td>
<td>k-d tree</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>CGAL [4]</td>
<td>Ver. 3.5.1-1</td>
<td>k-d tree</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>FLANN [5]</td>
<td>bcf3a56e5fed2d4dce3a340725fa341fa36ef79a4</td>
<td>k-d tree</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
<td>high dimensions</td>
</tr>
<tr>
<td>libnabo [6]</td>
<td>Ver. 1.0.0</td>
<td>k-d tree</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>SpatialIndex [7]</td>
<td>Ver. 1.4.0-1.1</td>
<td>R-tree</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td>multithreading</td>
</tr>
<tr>
<td>STANN [8]</td>
<td>Ver. 0.71 beta</td>
<td>SFC</td>
<td>✓</td>
<td>×</td>
<td>×</td>
<td></td>
</tr>
</tbody>
</table>

Matching Time in s

- actuated SICK LMS200
- Microsoft Kinect
- Riegl VZ-400

Large Scale 3D Point Cloud Processing Tutorial
Dr. Andreas Nüchter
November 25, 2013
NNS Search – the Critical Issue
The ICP Algorithm (8)

• Point reduction – another key for fast ICP algorithms
 – Start with cube surrounding the 3D point cloud
The ICP Algorithm (9)

- Point reduction – another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud
 - Divide

- Another key issue: maximal point-to-point distance.
Registering Surfaces (1)

• Given

The main idea:
 – Pairwise matching technique
 – We want to minimize the distance between the two parts
 – We set up a variational problem
 – Minimize distance “energy” by rigid motion of one part
Registering Surfaces (2)

Problem:
- How to compute the distance
- This is simple if we know the corresponding points.
- Of course, we have in general no idea of what corresponds...

• ICP-idea: set closest point as corresponding point

• Full algorithm:
 - Compute closest point points
 - Minimize distance to these closest points by a rigid motion
 - Recompute new closest points and iterate
Registering Surfaces (3)

- Distances

![Diagram of Distances](image1)

- Closest Point Distances

![Diagram of Closest Point Distances](image2)
Registering Surfaces (4) – ICP iterations

Part A

Part B

Part A

Part B

final result
Processing Large Data Sets (1)

bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75
--epsICP=0.00001 ~/dat/hannover/

We see: small matching errors accumulate
Applications of 3D Mapping with ICP

CMU 3D mapping of abandoned mines

RoboCup Rescue

(video)

(video)

(video)
6D SLAM – Global Relaxation (1)

- In SLAM loop closing is the key to build consistent maps
- Notice: Consistent vs. correct or accurate

- GraphSLAM
 - Graph Estimation
 - Graph Optimization

- Graph Estimation
 - Simple strategy: Connect poses with graph edges that are close enough
 - Simple strategy: Connect poses, they have enough point pairs (closest points)
The global Algorithm

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/Mckay 1992]

For prior point set M ("model set") and data set D

1. Select point correspondences $w_{i,j}$ in \{0,1\}
2. Minimize for rotation R, translation t

$$E(R, t) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \left\| m_i - (Rd_j + t) \right\|^2$$

3. Iterate 1. and 2.

Four closed form solution for the minimization works in 3 translation plus 3 rotation dimensions

$$E = \sum_{j=k}^{m} \sum_{i} |R_j m_i + t_j - (R_k d_i + t_k)|^2$$

Minimize for all rotations R and translations t at the same time
Parametrizations for the Rigid Body Transformations

$$E = \sum_{j \rightarrow k} \sum_{i} |R_{j}m_{i} + t_{j} - (R_{k}d_{i} + t_{k})|^{2}$$

• Helix transformation

$$v(p) = \bar{x} + x \times p$$

$$E = \sum_{j \rightarrow k} \sum_{i} (m_{i} - d_{i} + (\bar{x}_{j} + x_{j} \times m_{i}) - (\bar{x}_{k} + x_{k} \times m_{i}))^{2}$$

... solving a system of linear equations
Parametrizations for the Rigid Body Transformations

\[
E = \sum_{j \rightarrow k} \sum_{i} |R_j m_i + t_j - (R_k d_i + t_k)|^2
\]

• Small angle approximation

\[
\sin \theta \approx \theta - \frac{\theta^3}{3} + \frac{\theta^5}{5} - \cdots
\]

\[
\cos \theta \approx 1 - \frac{\theta^2}{2} + \frac{\theta^4}{4} - \cdots
\]

\[
R \approx \begin{pmatrix}
1 & -\theta_z & \theta_y \\
\theta_x \theta_z + \theta_z & 1 - \theta_x \theta_y \theta_z & -\theta_x \\
\theta_x \theta_z - \theta_y & \theta_x + \theta_y \theta_z & 1
\end{pmatrix}
\]

\[
R \approx \begin{pmatrix}
1 & -\theta_z & \theta_y \\
\theta_z & 1 & -\theta_x \\
-\theta_y & \theta_x & 1
\end{pmatrix}
\]

... solving a system of linear equations
Parametrizations for the Rigid Body Transformations

\[E = \sum_{j \rightarrow k} \sum_{i} |R_j m_i + t_j - (R_k d_i + t_k)|^2 \]

- Explicit modeling of uncertainties
- Assumptions: The unknown error is normally distributed

\[W = \sum_{j \rightarrow k} (\bar{E}_{j,k} - E_{j,k}')^T C_{j,k}^{-1} (\bar{E}_{j,k}' - E_{j,k}') \]
\[= \sum_{j \rightarrow k} (\bar{E}_{j,k} - (X_j' - X_k')) C_{j,k}^{-1} (\bar{E}_{j,k}' - (X_j' - X_k')). \]
\[E_{j,k} = \sum_{i=1}^{m} \|X_j \oplus d_i - X_k \oplus m_i\|^2 = \sum_{i=1}^{m} \|Z_i(X_j, X_k)\|^2 \]

... solving a system of linear equations
Comparisons of the Parametrizations

<table>
<thead>
<tr>
<th>Global ICP</th>
<th>Classical Pose GraphSLAM</th>
<th>Riegl Laser Measurement GmbH</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gaussian noise in the „3D Point Cloud“ space</td>
<td>• Gaussian noise in the space of poses</td>
<td>(video)</td>
</tr>
<tr>
<td>• Locally optimal</td>
<td>• Locally optimal</td>
<td>(video)</td>
</tr>
<tr>
<td>• ICP-like iterations using new point correspondences</td>
<td>• Gradient descent needed</td>
<td>(video)</td>
</tr>
<tr>
<td></td>
<td>• ICP-like iterations using new point correspondences needed as well</td>
<td>(video)</td>
</tr>
</tbody>
</table>
Closed Loop Detection and Global Relaxation

3D data acquisition
Processing Large Data Sets (2)

```
bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75
    --epsICP=0.00001 ~/dat/hannover/
```

We see: small matching errors accumulate

```
bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75
    --epsICP=0.00001
    -D 250 -I 50 --cldist=750 -L 0 -G 1
~/dat_hannover

bin/show -s 1 -e 65 ~/dat/dat_hannover
```