Large-Scale 3D Point Cloud Processing Tutorial 2013 Registration & SLAM

The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single eye, complete with iris and pupil. Thus, the image is called

"Self Portrait with Duckling".

Prof. Dr. Andreas Nüchter

The ICP Algorithm (1)

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set *M* ("model set") and data set *D*

- **1.** Select point correspondences $w_{i,j}$ in {0,1}
- 2. Minimize for rotation **R**, translation **t**

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \left| \left| \mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t}) \right| \right|^2$$

- 3. Iterate 1. and 2.
- SVD-based calculation of rotation
- works in 3 translation plus 3 rotation dimensions
 - \Rightarrow 6D SLAM with closed loop detection and global relaxation.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

The ICP Algorithm (2)

Closed form (one-step) solution for minimizing of the error function

1. Cancel the double sum:

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t})||^2$$

$$\propto \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}_i - (\mathbf{R}\mathbf{d}_i + \mathbf{t})||^2,$$

2. Compute centroids of the matching points

$$\mathbf{c}_{m} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{m}_{i}, \qquad \mathbf{c}_{d} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{d}_{j}$$
$$M' = \{\mathbf{m}'_{i} = \mathbf{m}_{i} - \mathbf{c}_{m}\}_{1,...,N}, \qquad D' = \{\mathbf{d}'_{i} = \mathbf{d}_{i} - \mathbf{c}_{d}\}_{1,...,N}.$$

3. Rewrite the error function

$$E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}'_i - \mathbf{R}\mathbf{d}'_i - \underbrace{(\mathbf{t} - \mathbf{c}_m + \mathbf{R}\mathbf{c}_d)}_{=\tilde{\mathbf{t}}}||^2$$

Julius-Maximilians-UNIVERSITÄT WÜRZBURG Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

The ICP Algorithm (3)

Closed form (one-step) solution for minimizing of the error function

3. Rewrite the error function

$$E(\mathbf{R}, \mathbf{t}) = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}'_{i} - \mathbf{R}\mathbf{d}'_{i} - \underbrace{(\mathbf{t} - \mathbf{c}_{m} + \mathbf{R}\mathbf{c}_{d})}_{=\tilde{\mathbf{t}}}||^{2}$$
$$= \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{m}'_{i} - \mathbf{R}\mathbf{d}'_{i}||^{2} - \frac{2}{N}\tilde{\mathbf{t}} \cdot \sum_{i=1}^{N} (\mathbf{m}'_{i} - \mathbf{R}\mathbf{d}'_{i}) + \frac{1}{N} \sum_{i=1}^{N} ||\tilde{\mathbf{t}}||^{2}.$$

 \succ Minimize only the first term! (The second is zero and the third has a minimum for $\tilde{t} = 0$).

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R} \mathbf{d}'_{i} \right| \right|^{2}.$$

Arun, Huang und Blostein suggest a solution based on the singular value decomosition.

K. S. Arun, T. S. Huang, and S. D. Blostein. Least square fitting of two 3-d point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9(5):698 – 700, 1987.

Iulius-Maximilians-Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

UNIVERSITÄ

WIJRZBURG

The ICP Algorithm (4)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix}d'_{ix}$, $S_{xy} = \sum_{i=1}^{N} m'_{ix}d'_{iy}$, ..., then the optimal solution for $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} ||\mathbf{m}'_i - \mathbf{R}\mathbf{d}'_i||^2$ is $\mathbf{R} = \mathbf{V}\mathbf{U}^T$ with $\mathbf{H} = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^T$ from the SVD.

Proof:

Iulius-Maximilians-

UNIVERSIT

WIJRZBURG

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left| \left| \mathbf{m}'_{i} - \mathbf{R} \mathbf{d}'_{i} \right| \right|^{2}$$

Rewrite

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} \left\| |\mathbf{m}'_{i}| \right\|^{2} - 2 \sum_{i=1}^{N} \mathbf{m}'_{i} \cdot \mathbf{R} \mathbf{d}'_{i} + \sum_{i=1}^{N} \left\| |\mathbf{d}'_{i}| \right\|^{2}.$$

Rotation is length preserving, i.e., maximize the term

$$\sum_{i=1}^{N} \mathbf{m}'_{i} \cdot \mathbf{R} \mathbf{d}'_{i} = \sum_{i=1}^{N} \mathbf{m'_{i}}^{T} \mathbf{R} \mathbf{d}'_{i}$$

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

The ICP Algorithm (5)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix}d'_{ix}$, $S_{xy} = \sum_{i=1}^{N} m'_{ix}d'_{iy}$, ..., then the optimal solution for $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} ||\mathbf{m}'_i - \mathbf{R}\mathbf{d}'_i||^2$ is $\mathbf{R} = \mathbf{V}\mathbf{U}^T$ with $\mathbf{H} = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^T$ from the SVD.

Proof:
$$\sum_{i=1}^{N} \mathbf{m}'_i \cdot \mathbf{R} \mathbf{d}'_i = \sum_{i=1}^{N} \mathbf{m}'_i^T \mathbf{R} \mathbf{d}'_i$$

Rewrite using the trace of a matrix

$$\operatorname{Trace}\left(\sum_{i=1}^{N} \mathbf{R} \mathbf{d}_{i}^{\prime} \mathbf{m}_{i}^{\prime T}\right) = \operatorname{Trace}\left(\mathbf{R} \mathbf{H}\right)$$

Lemma: For all positiv definite matrices AA^T and all orthonormal matrices B the following equation holds: $Trace(AA^T) \ge Trace(BAA^T)$

UNIVERSITÄT WÜRZBURG Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

The ICP Algorithm (6)

Theorem: Given a 3 x 3 correlation matrix

$$\mathbf{H} = \sum_{i=1}^{N} \mathbf{m}_{i}^{T} \mathbf{d}_{i}^{\prime} = \begin{pmatrix} S_{xx} & S_{xy} & S_{xz} \\ S_{yx} & S_{yy} & S_{yz} \\ S_{zx} & S_{zy} & S_{zz} \end{pmatrix}$$

with $S_{xx} = \sum_{i=1}^{N} m'_{ix}d'_{ix}, S_{xy} = \sum_{i=1}^{N} m'_{ix}d'_{iy}, \dots$, then the optimal solution for $E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N} ||\mathbf{m}'_i - \mathbf{R}\mathbf{d}'_i||^2$ is $\mathbf{R} = \mathbf{V}\mathbf{U}^T$ with $\mathbf{H} = \mathbf{U}\mathbf{\Lambda}\mathbf{V}^T$ from the SVD.

Proof: Suppose the singular value decomposition of H is $H = U\Lambda V^T$

 ${f U}$ and ${f V}\,$ are orthonormal 3 x 3 and ${f \Lambda}\,$ a diagonal matrix without

negative entries .

$$\mathbf{R} = \mathbf{V}\mathbf{U}^T$$

R is orthonormal and **RH** = $\mathbf{V}\mathbf{U}^T\mathbf{U}\mathbf{\Lambda}\mathbf{V}^T$ = $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^T$ Therefore **R** maximizes

$$\sum_{i=1}^{N} \mathbf{m'_i}^T \mathbf{R} \mathbf{d'_i}$$

And using the lemma it is $\operatorname{Trace}(\mathbf{RH}) \geq \operatorname{Trace}(\mathbf{BRH})$.

Robotics and Telematics

The ICP Algorithm (7)

- Estimating the transformation can be accomplished very fast O(n)
- Closest point search
 - Naïve O(n²), i.e., brute force
 - K-d trees for searching in logarithmic time Recommendation: Start with

ANN: A Library for Approximate Nearest Neighbor Searching by David M. Mount and Sunil Arya (University of Maryland)

- Easy to use
- Many different methods are available
- Quite fast

http://www.cs.umd.edu/~mount/ANN/

Julius-Maximilians UNIVERSITÄT WÜRZBURG Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

K-d Tree based NNS (1)

 One has to search all buckets according to the ball-withinbounds-test. ⇒ Backtracking

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

NNS Search – the Critical Issue

Properties for all tested NNS libraries.

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

NNS Search – the Critical Issue

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

The ICP Algorithm (8)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

The ICP Algorithm (9)

- Point reduction another key for fast ICP algorithms
 - Start with cube surrounding the 3D point cloud
 - Divide
- Another key issue: maximal point-to-point distance.

Registering Surfaces (1)

• Given

The main idea:

- Pairwise matching technique
- We want to minimize the distance between the two parts
- We set up a variational problem
- Minimize distance "energy" by rigid motion of one part

Registering Surfaces (2)

Problem:

- How to compute the distance
- This is simple if we know the corresponding points.
- Of course, we have in general no idea of what corresponds...
- ICP-idea: set closest point as corresponding point
- Full algorithm:
 - Compute closest point points
 - Minimize distance to these closest points by a rigid motion
 - Recompute new closest points and iterate

Registering Surfaces (3)

Distances

Registering Surfaces (4) – ICP iterations

Processing Large Data Sets (1)

We see: small matching errors accumulate

Applications of 3D Mapping with ICP

CMU 3D mapping of abandoned mines

RoboCup Rescue

(video) (video)

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

6D SLAM – Global Relaxation (1)

- In SLAM loop closing is the key to build consistent maps
- Notice: Consistent vs. correct or accurate
- GraphSLAM
 - Graph Estimation
 - Graph Optimization
- Graph Estimation
 - Simple strategy: Connect poses with graph edges that are close enough
 - Simple strategy: Connect poses, they have enough point pairs (closest points)

The globalgoffthing or ithm

Scan registration Put two independent scans into one frame of reference

Iterative Closest Point algorithm [Besl/McKay 1992]

For prior point set *M* ("model set") and data set *D*

- Select point correspondences wi,j in {0,1}
- 2. Minimize for rotation R, translation t

$$E(\mathbf{R}, \mathbf{t}) = \sum_{i=1}^{N_m} \sum_{j=1}^{N_d} w_{i,j} \left| \left| \mathbf{m}_i - (\mathbf{R}\mathbf{d}_j + \mathbf{t}) \right| \right|^2$$

3. Iterate 1. and 2.

For goos forms is the tige of a rate of the chinic tige of the chinic

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j}\mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k}\mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

Minimize for all rotations ${\bf R}$ and translations ${\bf t}$ at the same time

Parametrizations for the Rigid Body Transformations

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j}\mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k}\mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

Helix transformation

$$\mathbf{v}(\mathbf{p}) = \bar{\mathbf{x}} + \mathbf{x} \times \mathbf{p}$$

$$E = \sum_{j \to k} \sum_{i} (\mathbf{m}_{i} - \mathbf{d}_{i} + (\bar{\mathbf{x}}_{j} + \mathbf{x}_{j} \times \mathbf{m}_{i}) - (\bar{\mathbf{x}}_{k} + \mathbf{x}_{k} \times \mathbf{m}_{i}))^{2}$$

... solving a system of linear equations

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

Parametrizations for the Rigid Body Transformations

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j}\mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k}\mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

• Small angle approximation

$$\sin \theta \approx \theta - \frac{\theta^{3}}{3} + \frac{\theta^{5}}{5} - \cdots$$

$$\cos \theta \approx 1 - \frac{\theta^{2}}{2} + \frac{\theta^{4}}{4} - \cdots$$

$$R \approx \begin{pmatrix} 1 & -\theta_{z} & \theta_{y} \\ \theta_{x}\theta_{y} + \theta_{z} & 1 - \theta_{x}\theta_{y}\theta_{z} & -\theta_{x} \\ \theta_{x}\theta_{z} - \theta_{y} & \theta_{x} + \theta_{y}\theta_{z} & 1 \end{pmatrix}$$

$$\mathbf{R} \approx \begin{pmatrix} 1 & -\theta_{z} & \theta_{y} \\ \theta_{z} & 1 & -\theta_{x} \\ -\theta_{y} & \theta_{x} & 1 \end{pmatrix} \qquad \dots \text{ solving a system of linear equations}$$

Parametrizations for the Rigid Body Transformations

$$E = \sum_{j \to k} \sum_{i} |\mathbf{R}_{j}\mathbf{m}_{i} + \mathbf{t}_{j} - (\mathbf{R}_{k}\mathbf{d}_{i} + \mathbf{t}_{k})|^{2}$$

- Explicit modeling of uncertainties
- Assumptions: The unknown error is normally distributed

$$W = \sum_{j \to k} (\bar{\mathbf{E}}_{j,k} - \mathbf{E}'_{j,k})^T \mathbf{C}_{j,k}^{-1} (\bar{\mathbf{E}}'_{j,k} - \mathbf{E}'_{j,k})$$
$$= \sum_{j \to k} (\bar{\mathbf{E}}_{j,k} - (\mathbf{X}'_j - \mathbf{X}'_k)) \mathbf{C}_{j,k}^{-1} (\bar{\mathbf{E}}'_{j,k} - (\mathbf{X}'_j - \mathbf{X}'_k)).$$
$$E_{j,k} = \sum_{i=1}^m \|\mathbf{X}_j \oplus \mathbf{d}_i - \mathbf{X}_k \oplus \mathbf{m}_i\|^2 = \sum_{i=1}^m \|\mathbf{Z}_i(\mathbf{X}_j, \mathbf{X}_k)\|^2$$

... solving a system of linear equations

Comparisons of the Parametrizations

Global ICP

- Gaussian noise in the "3D Point Cloud" space
- Locally optimal
- ICP-like iterations using new point correspondences
 - Riegl Laser Measurement GmbH

(video)

(video) (video) (video)

Closed Loop Detection and Global Relaxation

Processing Large Data Sets (2)

We see: small matching errors accumulate

```
bin/slam6D -s 1 -e 65 -r 10 -i 100 -d 75
    --epsICP=0.00001
    -D 250 -I 50 --cldist=750 -L 0 -G 1
    ~/dat_hannover
```

bin/show -s 1 -e 65 ~/dat/dat_hannover

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

