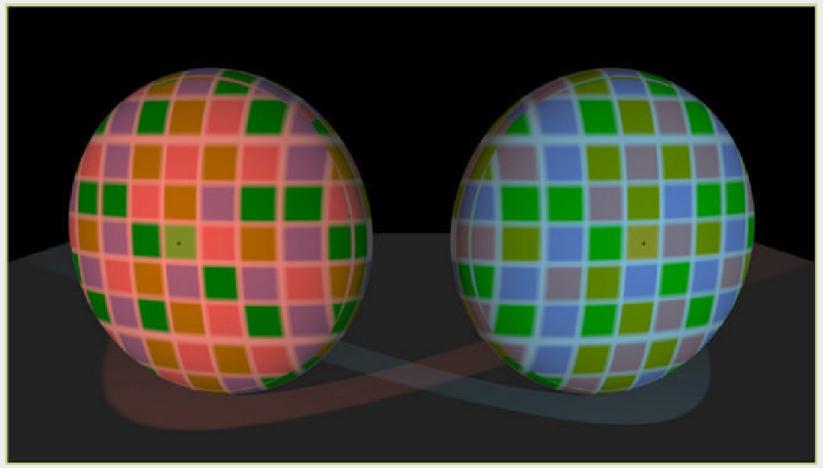
Large-Scale 3D Point Cloud Processing Tutorial 2013

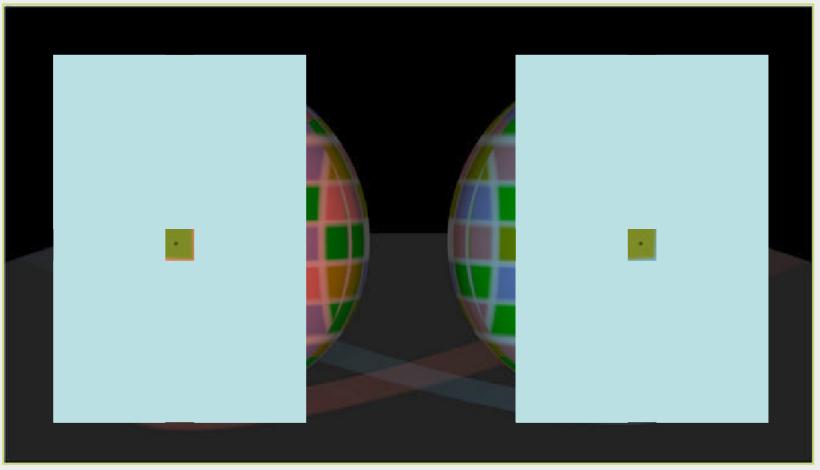

The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single eye, complete with iris and pupil. Thus, the image is called "Self Portrait with Duckling".

Prof. Dr. Andreas Nüchter

Features

Features (1)

• What is a feature?


Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

Features (1)

• What is a feature?

- Local, meaningful, detectable parts of the image

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

Features (2)

- What is a feature?
 - Image region of sudden change
 - Shape features, contours texture features

5

Features (2)

- What is a feature?
 - Image region of sudden change
 - Shape features, contours texture features


Features (2)

- What is a feature?
 - Image region of sudden change
 - Shape features, contours texture features

- Why use features?
 - Information content high
 - Invariant to change of view point, illumination
 - Reduces computational burden

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

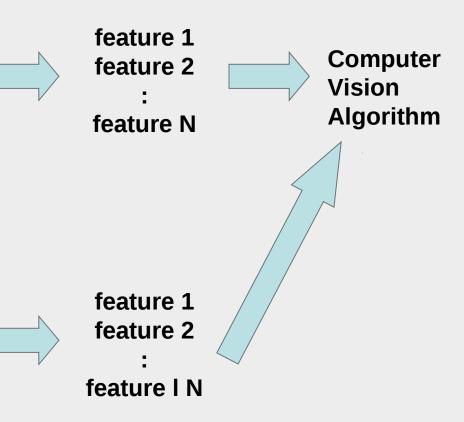
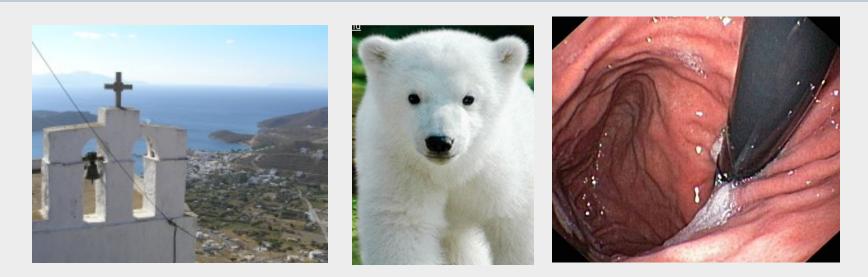

Work flow in Computer Vision

Image 1

Image 2



Julius-Maximilians-UNIVERSITÄT WÜRZBURG

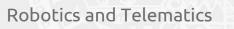
Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

Where are features used?

- Calibration (we have already done this)
- Image Segmentation
- Correspondence in multiple images (stereo, structure from motion)
- Object detection, classification
 - Good features support these processes

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013



Edge- and Corner Detection

- **Goal:** Identify of a sudden change (discontinuity) in an image
- These are the locations, where the most information is "saved"
- Example: Sketch of an artist (But the painter uses knowledge about objects)

Already seen: Edge detection

Source: S. Thrun

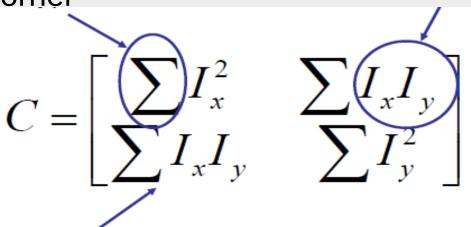
Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

From Edges to Corners

- Edge detectors perform poorly at corners.
- Corners provide repeatable points for matching, so are worth detecting.

Idea:

- Exactly at a corner, gradient is ill defined.
- However, in the region around a corner, gradient has two or more different values.

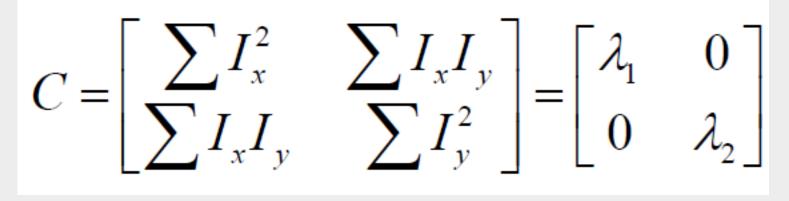


The Harris Corner Detector (1)

Form the second-moment matrix:

Sum over a small region around the hypothetical corner Gradient with respect to x, times gradient with respect to y

Matrix is symmetric


Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

The Harris Corner Detector (2)

Simple case – first, consider case where:

This means dominant gradient directions align with x or y axis

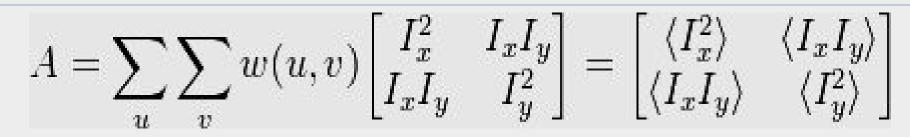
If either λ is close to 0, then this is not a corner, so look for locations where both are large.

The Harris Corner Detector (3)

General case

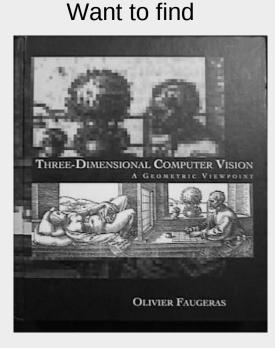
It can be shown that since C is rotationally symmetric:

$$C = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$


So every case is like a rotated version of the one on last slide.

The Harris Corner Detector (4)

 Harris and Stephens noted that exact computation of the eigenvalues is computationally expensive, since it requires the computation of a square root, and instead suggest the following function M_c, where κ is a tunable sensitivity parameter:


$$M_c = \lambda_1 \lambda_2 - \kappa \left(\lambda_1 + \lambda_2\right)^2 = \det(A) - \kappa \operatorname{trace}^2(A)$$

• Therefore, the algorithm does not have to actually compute the eigenvalue decomposition of the matrix A and instead it is sufficient to evaluate the determinant and trace of A to find corners, or rather interest points in general.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Problem: Features for Recognition

... in here

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

Solution: SIFT Features

- Invariants:
 - Scaling Yes
 Rotation Yes
 Illumination Yes
 Perspective projection ???
- additional
 - Good localization

Yes

Switch to Hamid

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Large Scale 3D Point Cloud Processing Tutorial Dr. Andreas Nüchter November 25, 2013

