Overview Package Class Source Class tree Glossary
previous class      next class frames      no frames

USARBot.AckermanSteeredRobot


00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
00084
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00096
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
00168
00169
00170
00171
00172
00173
00174
00175
00176
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00188
00189
00190
00191
00192
00193
00194
00195
00196
00197
00198
00199
00200
00201
00202
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00221
00222
00223
00224
00225
00226
00227
class AckermanSteeredRobot extends GroundVehicle config(USARBot);

// Structure to hold both the wheel index and the wheel's maximum steer angle
struct SteerData
{
    var int WheelNumber;
    var float maxSteer;
};

// Programming variables
var float FrontSteerSpeed, RearSteerSpeed, FrontSteerTorque, RearSteerTorque;
var float cachedVelocity, cachedFrontSteering, cachedRearSteering;
var bool gotRobotInfo;
var array<int> PoweredWheels;
var array<SteerData> FrontSteerWheels, RearSteerWheels;

function ProcessCarInput()
{
    local float InputVelocity,InputFrontSteering,InputRearSteering;
    local bool isCommandNormalized, noNeedToUpdateSpeed, noNeedToUpdateFrontSteer, noNeedToUpdateRearSteer;
    local int i;

    // Variable Initialization
    noNeedToUpdateSpeed = true;
    noNeedToUpdateFrontSteer = true;
    noNeedToUpdateRearSteer = true;

    Super.ProcessCarInput();

    // This section gets/sets various information about the robot (Note: this code only runs once)
    if(!gotRobotInfo)
    {
        // Get information about the robot's wheels
        for(i=0; i<Wheels.length; i++)
        {
            if(Wheels[i].PowerType == Left_Powered || Wheels[i].PowerType == Right_Powered) // Get all the powered wheels into a dynamic array
            {
                PoweredWheels.Insert(PoweredWheels.length, 1);            // Make space in the dynamic array to add a powered wheel
                PoweredWheels[PoweredWheels.length-1] = Wheels[i].Number; // Store the index number of the part in the dynamic array
            }

            if(Wheels[i].SteerType == Front_Steered) // Get all the front steered wheels into a dynamic array
            {
                FrontSteerWheels.Insert(FrontSteerWheels.length, 1);                            // Make space in the dynamic array to add a front-steered wheel
                FrontSteerWheels[FrontSteerWheels.length-1].WheelNumber = Wheels[i].Number;     // Store the index number of the part in the dynamic array
                FrontSteerWheels[FrontSteerWheels.length-1].maxSteer = Wheels[i].MaxSteerAngle; // Store the maximum steering angle in the dynamic array

                JointParts[Wheels[i].Number].bSteeringLocked = false; //Make sure the wheel is not locked (so that it can be steered)
            }
            else if(Wheels[i].SteerType == Rear_Steered) // Get all the rear steered wheels into a dynamic array
            {
                RearSteerWheels.Insert(RearSteerWheels.length, 1);                            // Make space in the dynamic array to add a rear-steered wheel
                RearSteerWheels[RearSteerWheels.length-1].WheelNumber = Wheels[i].Number;     // Store the index number of the part in the dynamic array
                RearSteerWheels[RearSteerWheels.length-1].maxSteer = Wheels[i].MaxSteerAngle; // Store the maximum steering angle in the dynamic array

                JointParts[Wheels[i].Number].bSteeringLocked = false; //Make sure the wheel is not locked (so that it can be steered)
            }
            else
            {
                JointParts[Wheels[i].Number].bSteeringLocked = true; //Make sure the wheel is locked (so that it cannot be steered)
            }
        }

        // Initialize the controller's properties
        USARRemoteBot(Controller).Normalized = false;
        USARRemoteBot(Controller).Speed = 0.0;
        USARRemoteBot(Controller).FrontSteer = 0.0;
        USARRemoteBot(Controller).RearSteer = 0.0;
        
        gotRobotInfo=true;

        // Section used for debugging purposes to see if the correct joints have been saved in the dynamic arrays
        if(bDebug)
        {
            for(i=0; i<PoweredWheels.Length; i++) Log("Powered Wheel #" $ i+1 $ ": " $ PoweredWheels[i]);

            for(i=0; i<FrontSteerWheels.Length; i++) Log("Front Steered Wheel #" $ i+1 $ ": " $ FrontSteerWheels[i].WheelNumber);

            for(i=0; i<RearSteerWheels.Length; i++) Log("Rear Steered Wheel #" $ i+1 $ ": " $ RearSteerWheels[i].WheelNumber);
        }
    }

    // Here, we deal with the robot's movement
    if (USARRemoteBot(Controller).bNewThrottle)
    {
        isCommandNormalized = USARRemoteBot(Controller).Normalized; // Get the Normalized value from the controller
        InputVelocity = USARRemoteBot(Controller).Speed;            // Get the wheel's spin speed value from the controller
        InputFrontSteering = USARRemoteBot(Controller).FrontSteer;  // Get the front steer value from the controller
        InputRearSteering = USARRemoteBot(Controller).RearSteer;    // Get the rear steer value from the controller

        // If a normalized drive command was received (e.g. the speed value is between -100 and 100)
        if (isCommandNormalized)
        {
            if(InputVelocity < -100)     InputVelocity = Converter.SpinSpeedToUU(-maxSpinSpeed);                       // If the controller's value is less than -100, we use the negative of the robot's maximum spin speed
        else if(InputVelocity > 100) InputVelocity = Converter.SpinSpeedToUU(maxSpinSpeed);                        // If the controller's value is more than 100, we use the robot's maximum spin speed
        else                         InputVelocity = (InputVelocity/100) * Converter.SpinSpeedToUU(maxSpinSpeed);  // If the controller's value is between -100 and 100, we use a percentage of the maximum spin speed
        }
        // If a non-normalized drive command was received (e.g. the speed is an absolute values, in radians per second)
        else
        {
            if(InputVelocity < -maxSpinSpeed)     InputVelocity = Converter.SpinSpeedToUU(-maxSpinSpeed); // If the controller's value is less than -(maxSpinSpeed), we use the negative of the robot's maximum spin speed
        else if(InputVelocity > maxSpinSpeed) InputVelocity = Converter.SpinSpeedToUU(maxSpinSpeed);  // If the controller's value is more than maxSpinSpeed, we use the robot's maximum spin speed
        else                                  InputVelocity = Converter.SpinSpeedToUU(InputVelocity); // Otherwise, we use the controller's value
    }

        // Here, we physically spin the appropriate wheels
        if((PoweredWheels.length!=0) && (cachedVelocity != InputVelocity))
        {
            // Spin the appropriate wheels
            for(i=0; i<PoweredWheels.length; i++)
            {
                setSpinSpeed(PoweredWheels[i], InputVelocity);
            }

            bNewCommand = true;
        }

        // Here, we turn the appropiate front-steered wheels, taking into account whether or not the drive command issued is normalized
        if((FrontSteerWheels.length!=0) && (cachedFrontSteering != InputFrontSteering))
        {
            for(i=0; i<FrontSteerWheels.length; i++)
            {
                // If a normalized drive command was received (e.g. the front-steer value is between -100 and 100)
                if (isCommandNormalized)
                {
                    if(InputFrontSteering < -100)     setAngle(FrontSteerWheels[i].WheelNumber,Converter.AngleToUU(-FrontSteerWheels[i].maxSteer));
                    else if(InputFrontSteering > 100) setAngle(FrontSteerWheels[i].WheelNumber,Converter.AngleToUU(FrontSteerWheels[i].maxSteer));
                    else                              setAngle(FrontSteerWheels[i].WheelNumber,((InputFrontSteering/100) * Converter.AngleToUU(FrontSteerWheels[i].maxSteer)));
                }
                // If a non-normalized drive command was received (e.g. the front-steer is an absolute values, in radians)
                else
                {
                    if(InputFrontSteering < -FrontSteerWheels[i].maxSteer)     setAngle(FrontSteerWheels[i].WheelNumber,Converter.AngleToUU(-FrontSteerWheels[i].maxSteer));
                    else if(InputFrontSteering > FrontSteerWheels[i].maxSteer) setAngle(FrontSteerWheels[i].WheelNumber,Converter.AngleToUU(FrontSteerWheels[i].maxSteer));
                    else                                                       setAngle(FrontSteerWheels[i].WheelNumber,Converter.AngleToUU(InputFrontSteering));
                }
            }

            bNewCommand = true;
        }

        // Here, we turn the appropiate rear-steered wheels, taking into account whether or not the drive command issued is normalized
        if((RearSteerWheels.length!=0) && (cachedRearSteering!=InputRearSteering))
        {
            for(i=0; i<RearSteerWheels.length; i++)
            {
                // If a normalized drive command was received (e.g. the rear-steer value is between -100 and 100)
                if (isCommandNormalized)
                {
                    if(InputRearSteering < -100)     setAngle(RearSteerWheels[i].WheelNumber,Converter.AngleToUU(-RearSteerWheels[i].maxSteer));
                    else if(InputRearSteering > 100) setAngle(RearSteerWheels[i].WheelNumber,Converter.AngleToUU(RearSteerWheels[i].maxSteer));
                    else                             setAngle(RearSteerWheels[i].WheelNumber,(InputRearSteering/100) * Converter.AngleToUU(RearSteerWheels[i].maxSteer));
                }
                // If a non-normalized drive command was received (e.g. the rear-steer is an absolute values, in radians)
                else
                {
                    if(InputRearSteering < -RearSteerWheels[i].maxSteer)     setAngle(RearSteerWheels[i].WheelNumber,Converter.AngleToUU(-RearSteerWheels[i].maxSteer));
                    else if(InputRearSteering > RearSteerWheels[i].maxSteer) setAngle(RearSteerWheels[i].WheelNumber,Converter.AngleToUU(RearSteerWheels[i].maxSteer));
                    else                                                     setAngle(RearSteerWheels[i].WheelNumber,Converter.AngleToUU(InputRearSteering));
                }
            }

            bNewCommand = true;
        }

        for(i=1; i<PoweredWheels.length; i++)    noNeedToUpdateSpeed = noNeedToUpdateSpeed && (JointsControl[PoweredWheels[0]].value == JointsControl[PoweredWheels[i]].value);

        for(i=1; i<FrontSteerWheels.length; i++) noNeedToUpdateFrontSteer = noNeedToUpdateFrontSteer && (JointsControl[FrontSteerWheels[0].WheelNumber].steer == JointsControl[FrontSteerWheels[i].WheelNumber].steer);

        for(i=1; i<RearSteerWheels.length; i++)  noNeedToUpdateRearSteer = noNeedToUpdateRearSteer && (JointsControl[RearSteerWheels[0].WheelNumber].steer == JointsControl[FrontSteerWheels[i].WheelNumber].steer);


        if((PoweredWheels.length!=0) && noNeedToUpdateSpeed) cachedVelocity=JointsControl[PoweredWheels[0]].value;
        else                                                 cachedVelocity=1000000; // a big value to force updating

        if((FrontSteerWheels.length!=0) && noNeedToUpdateFrontSteer) cachedFrontSteering=JointsControl[FrontSteerWheels[0].WheelNumber].steer;
        else                                                         cachedFrontSteering=1000000; // a big value to force updating

        if((RearSteerWheels.length!=0) && noNeedToUpdateRearSteer) cachedRearSteering=JointsControl[RearSteerWheels[0].WheelNumber].steer;
        else                                                       cachedRearSteering=1000000; // a big value to force updating

    }
}

/*
   Code which might be used to regulate the speed and torque of the steering
*/
/*
simulated function Tick(float Delta)
{
    local KCarWheelJoint Joint;
    local int i;

    Super.Tick(Delta);

    // Here, we set the steering speed and steering torque of the front wheels
    for(i=0; i<FrontSteerWheels.Length; i++)
    {
        Joint=KCarWheelJoint(Joints[FrontSteerWheels[i].WheelNumber]);
        Joint.KMaxSteerSpeed = FrontSteerSpeed;
        Joint.KMaxSteerTorque = FrontSteerTorque;
        Joint.KUpdateConstraintParams();
    }

    // Here, we set the steering speed and steering torque of the rear wheels
    for(i=0; i<RearSteerWheels.Length; i++)
    {
        Joint=KCarWheelJoint(Joints[FrontSteerWheels[i].WheelNumber]);
        Joint.KMaxSteerSpeed = RearSteerSpeed;
        Joint.KMaxSteerTorque = RearSteerTorque;
        Joint.KUpdateConstraintParams();
    }
}*/


//*********************************************************************************************************************
// DEFAULT PROPERTIES
// DO NOT change these properties since they are used to initialize programming variables
//*********************************************************************************************************************
defaultproperties
{
    gotRobotInfo = false
    FrontSteerSpeed = SteerSpeed
    RearSteerSpeed = SteerSpeed
    FrontSteerTorque = SteerTorque
    RearSteerTorque = SteerTorque
}

Overview Package Class Source Class tree Glossary
previous class      next class frames      no frames
Class file time: Mi 24.1.2007 14:53:44.000 - Creation time: Mo 16.4.2007 11:20:43.796 - Created with UnCodeX