Overview | Package | Class | Source | Class tree | Glossary | UnrealScript Documentation |
previous class next class | frames no frames |
00001 00002 00003 00004 00005 00006 00007 00008 00009 00010 00011 00012 00013 00014 00015 00016 00017 00018 00019 00020 00021 00022 00023 00024 00025 00026 00027 00028 00029 00030 00031 00032 00033 00034 00035 00036 00037 00038 00039 00040 00041 00042 00043 00044 00045 00046 00047 00048 00049 00050 00051 00052 00053 00054 00055 00056 00057 00058 00059 00060 00061 00062 00063 00064 00065 00066 00067 00068 00069 00070 00071 00072 00073 00074 00075 00076 00077 00078 00079 00080 00081 00082 00083 00084 00085 00086 00087 00088 00089 00090 00091 00092 00093 00094 00095 00096 00097 00098 00099 00100 00101 00102 00103 00104 00105 00106 00107 00108 00109 00110 00111 00112 00113 00114 00115 00116 00117 00118 00119 00120 00121 00122 00123 00124 00125 00126 00127 00128 00129 00130 00131 00132 00133 00134 00135 00136 00137 00138 00139 00140 00141 00142 00143 00144 00145 00146 00147 00148 00149 00150 00151 00152 00153 00154 00155 00156 00157 00158 00159 00160 00161 00162 00163 00164 00165 00166 00167 00168 00169 00170 00171 00172 00173 00174 00175 00176 00177 00178 00179 00180 00181 00182 00183 00184 00185 00186 00187 00188 00189 00190 00191 00192 00193 00194 00195 00196 00197 00198 00199 00200 00201 |
class HelicopterRobot extends AerialVehicle config(USARBot); // Programming variables (these variables are transparent to the users) var bool initialized; var float currentVel, PropellerForce, currentTime, oldTime, maxPitch, maxRoll, ControllerSpeed; var int PropellerIndex, AntiTorqueIndex; var vector TorqueToApply; function ProcessCarInput() { // Programming variables local int i; local float maxSpeed, InputSpeed; local bool isCommandNormalized; local rotator Rotation_Desired, Rotation_Current; Super.ProcessCarInput(); // Initializes various variables and fills up arrays. Note: this section is only executed once. if(!initialized) { // Here, we get the indexes of the propeller and of the anti-torque propeller for(i=0; i<JointParts.length; i++) { // Get main propeller if(InStr(Caps(string(JointParts[i].PartName)), "PRIMARY") != -1) { PropellerIndex = i; } // Get anti torque propeller if(InStr(Caps(string(JointParts[i].PartName)), "SECONDARY") != -1) { AntiTorqueIndex = i; } } // Initialize the controller's properties USARRemoteBot(Controller).Normalized = false; USARRemoteBot(Controller).Propeller = 0.0; USARRemoteBot(Controller).AircraftRotation = Rot(0,0,0); initialized = true; // Section used for debugging purposes to see if the correct joints have been saved if(bDebug) { Log("Primary Propeller: " $ PropellerIndex); Log("Secondary Propeller: " $ AntiTorqueIndex); } } PropellerForce = 0; TorqueToApply = Vect(0,0,0); currentTime = Level.TimeSeconds; // If a DRIVE command was issued if(USARRemoteBot(Controller).bNewThrottle) { isCommandNormalized = USARRemoteBot(Controller).Normalized; // Get the normalized bool from the controller ControllerSpeed = USARRemoteBot(Controller).Propeller; // Get the propeller's spin speed value from the controller Rotation_Desired = USARRemoteBot(Controller).AircraftRotation; // Get the desired aircraft rotation from the controller Rotation_Current = Rotation; if(Rotation_Current.Yaw < 0) Rotation_Current.Yaw += 65536; // Make sure the current rotation is between 0 and +2Pi (instead of -Pi and +Pi) maxSpeed = Propeller(Parts[PropellerIndex]).maxSpinSpeed; // Get the maximum spin speed for this propeller // Here, we make sure the propeller spin speed is a valid value, depending on whether or not the command is normalized if(isCommandNormalized) { if(ControllerSpeed < 0) InputSpeed = 0; // If the normalized value is less than 0, we make sure the propeller's speed is 0 (it cannot be negative) else if(ControllerSpeed > 100) InputSpeed = maxSpeed; // If the normalized value is more than 100, we use the propeller's maximum spin speed else InputSpeed = (ControllerSpeed/100) * maxSpeed; // If the normalized value is between -100 and 100, we use a percentage of the maximum spin speed } else { if(ControllerSpeed < 0) InputSpeed = 0; // If the absolute value is less than 0, we make sure the propeller's speed is 0 (it cannot be negative) else if(ControllerSpeed > maxSpeed) InputSpeed = maxSpeed; // If the absolute value is more than the maximum speed, we use the propeller's maximum spin speed else InputSpeed = ControllerSpeed; // Otherwise, we use the controller's value for the propeller's spin speed } // Here, we make sure the desired rotation's pitch (from the controller) is valid if(Rotation_Desired.Pitch < -Converter.AngleToUU(maxPitch)) Rotation_Desired.Pitch = -Converter.AngleToUU(maxPitch); else if(Rotation_Desired.Pitch > Converter.AngleToUU(maxPitch)) Rotation_Desired.Pitch = Converter.AngleToUU(maxPitch); // Here, we make sure the desired rotation's roll (from the controller) is valid if(Rotation_Desired.Roll < -Converter.AngleToUU(maxRoll)) Rotation_Desired.Roll = -Converter.AngleToUU(maxRoll); else if(Rotation_Desired.Roll > Converter.AngleToUU(maxRoll)) Rotation_Desired.Roll = Converter.AngleToUU(maxRoll); // Here, we make sure the desired rotation's yaw (from the controller) is valid (between 0 and +2Pi) if(Rotation_Desired.Yaw > 65536) // If the controller's value is more than 2Pi { while(Rotation_Desired.Yaw > 65536) // Subtract 2Pi until the value is less than 2Pi { Rotation_Desired.Yaw = Rotation_Desired.Yaw - 65536; } } else if(Rotation_Desired.Yaw < 0) // If the controller's value is less than 0 { while(Rotation_Desired.Yaw < 0) // Add 2Pi until the value is more than 0 { Rotation_Desired.Yaw = Rotation_Desired.Yaw + 65536; } } // Physically spin the primary propeller (spin the part) setSpinSpeed(PropellerIndex, Converter.SpinSpeedToUU(InputSpeed)); setSpinSpeed(AntiTorqueIndex, -Converter.SpinSpeedToUU(InputSpeed)); // Used to balance the helicopter // Find the velocity generated by the propeller currentVel = (InputSpeed/6.283185307179586476925286766559) * (Propeller(Parts[PropellerIndex]).Pitch); // Find the force generated by the propeller PropellerForce = getPropellerForce(); // The helicopter will only pitch/roll/yaw when the force generated by the propeller is greater than the force of gravity if(PropellerForce >= (9.8 * ChassisMass)) { // Here we deal with the helicopter rotation -> PITCH if(Rotation_Desired.Pitch > Rotation.Pitch) TorqueToApply.Y = -(InputSpeed/2); else if(Rotation_Desired.Pitch < Rotation.Pitch) TorqueToApply.Y = (InputSpeed/2); else TorqueToApply.Y = 0; // Here we deal with the helicopter rotation -> ROLL if(Rotation_Desired.Roll > Rotation.Roll) TorqueToApply.X = -(InputSpeed/2); else if(Rotation_Desired.Roll < Rotation.Roll) TorqueToApply.X = (InputSpeed/2); else TorqueToApply.X = 0; // Here, we deal with the helicopter roation -> YAW if(Rotation_Desired.Yaw == Rotation_Current.Yaw) TorqueToApply.Z = 0; else if(RotateClockwise(Rotation_Current, Rotation_Desired)) TorqueToApply.Z = (InputSpeed/2); else TorqueToApply.Z = -(InputSpeed/2); } oldTime = currentTime; KWake(); // Make sure that the Karma Engine is "awake" } } //********************************************************************************************************************* // RotateClockwise Function // -------------------------- // This function returns 'true' when it is faster to rotate clockwise to get from the current yaw to the deisred // yaw. It returns 'false' when it is faster to rotate counter-clockwise to get from the current yaw to the desired // yaw. //********************************************************************************************************************* function bool RotateClockwise(rotator current, rotator desired) { local int DistanceToCover; // Here, we calculate the distance to cover, in UU angle, to go from the current yaw to the desired yaw if(current.Yaw > desired.Yaw) DistanceToCover = 65536 - current.Yaw + desired.Yaw; else DistanceToCover = desired.Yaw - current.Yaw; return (DistanceToCover <= 32768); // If the distance to cover is less than Pi, we rotate the helicopter clockwise } //********************************************************************************************************************* // getPropellerForce Function // -------------------------- // Function that calculates and returns the force generated by the helicopter's propeller. //********************************************************************************************************************* function float getPropellerForce() { return (1.1 * currentVel * ChassisMass) / (currentTime - oldTime); } //********************************************************************************************************************* // KApplyForce Event // ----------------- // Event called at the same frequency of the Tick function, as long as the karma engine is "awake". // The event calculates the appropriate forces and torques, based on the helicopter's rotation, which // are then automatically applied by the Karma Engine. //********************************************************************************************************************* event KApplyForce(out vector Force, out vector Torque) { local float GravityForce; GravityForce = -9.8 * ChassisMass; // Set the Force to be applied by the Karma Engine, based on the helicopter's rotation Force = (PropellerForce * Vect(0,0,1)) >> Rotation; Force.Z += GravityForce; // Set the Linear Damping (the linear resistance), depending on whether or not the helicopter has enough power if(ControllerSpeed >= 7) KarmaParamsRBFull(KParams).KLinearDamping = 5; else if(ControllerSpeed < 7) KarmaParamsRBFull(KParams).KLinearDamping = 0.5; // Set the Torque to be applied by the Karma Engine, based on the helicopter's rotation Torque = TorqueToApply >> Rotation; } //********************************************************************************************************************* // DEFAULT PROPERTIES // DO NOT change these properties since they are used to initialize programming variables //********************************************************************************************************************* defaultproperties { initialized = false } |
Overview | Package | Class | Source | Class tree | Glossary | UnrealScript Documentation |
previous class next class | frames no frames |